Rose-Hulman Institute of Technology

Foundation Coalition Sophomore Engineering Curriculum

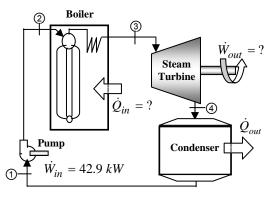
ES202 – Flui	Winter <u>200</u> 3- <u>200</u> 4		
Circle one:			
Lui – 01	Lui – 02	Name	
Sanders – 03	Sanders – 04		
Mayhew – 05	Mayhew – 06		
Richards – 07	Richards – 08		

Exam 1

Jan. 13, 2004

Problem 1	/ 40
Problem 2	/ 40
Problem 3	/ 20
Total	/ 100

Show all work for full credit.

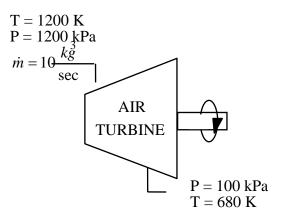

Open book, one page of notes, computer use for computational purposes.

EES is NOT allowed

DO NOT INTERPOLATE – USE CLOSEST TABULATED VALUE

1. (40 pts) The STEAM cycle below operates at the states indicated in the table at the right. The mass flow rate is 10 kg/s. Also the power input to the pump is 42.9 kW.

state	P [kPa]	T [°C]	u [kJ/kg]	h [kJ/kg]	s [kJ/(kg-K)]	Х
1	15	53.97	225.92	225.94	0.7549	0.00
2	16000	55	230.19	230.20	0.7679	NA
3	15000				6.3443	NA
4	20	60.06	2280.3	2421.04	7.342	0.92



- a) Compute the <u>power output from the turbine</u> in kW.
- b) Compute the <u>heat transfer input to the boiler</u> in kW.
- c) Compute the <u>thermal efficiency of the power cycle</u>.
- d) Compute the <u>turbine adiabatic efficiency</u>.

2. (40 pts) Analyze the AIR turbine in the diagram at the right. Standard assumptions for a turbine apply.

Also ASSUME AIR IS AN IDEAL GAS and use the AIR TABLE VALUES. .

- (a) Compute the <u>volumetric flow rate</u> at the turbine inlet.
- (b) Compute the power output in kW.
- (c) Compute the <u>turbine efficiency</u>.
- (d) Compute the <u>rate of entropy generation</u> for the turbine.

Problem 3. (20 Points) Use water (i.e. H₂O) for the following problems.

- a. Given: p=3 bar, x=0.4 Find: phase, T, v
- b. Given: p=1.5 bar, T=60°C Find: phase, v, h
- c. Given: p=5 bar, h=3356 kJ/kg Find: phase, T, v
- d. Plot and label these 3 points on the p-v diagram below.

