\qquad

Rose-Hulman Institute of Technology
 Foundation Coalition Sophomore Engineering Curriculum

ES202 - Fluid \& Thermal Systems			Winter 2003-2004
Circle one:			
Lui - 01	Lui - 02	Name	
Sanders - 03	Sanders - 04		
Mayhew - 05	Mayhew - 06		
Richards - 07	Richards - 08		

Exam 1

Jan. 13, 2004

Show all work for full credit.
Open book, one page of notes, computer use for computational purposes.
EES is NOT allowed
\qquad

1. (40 pts) The STEAM cycle below operates at the states indicated in the table at the right. The mass flow rate is $10 \mathrm{~kg} / \mathrm{s}$. Also the power input to the pump is 42.9 kW .

state	$\mathrm{P}[\mathrm{kPa}]$	$\mathrm{T}\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{u}[\mathrm{kJ} / \mathrm{kg}]$	$\mathrm{h}[\mathrm{kJ} / \mathrm{kg}]$	$\mathrm{s}[\mathrm{kJ} /(\mathrm{kg}-\mathrm{K})]$	x
1	15	53.97	225.92	225.94	0.7549	0.00
2	16000	55	230.19	230.20	0.7679	NA
3	15000				6.3443	NA
4	20	60.06	2280.3	2421.04	7.342	0.92

a) Compute the power output from the turbine in kW .
b) Compute the heat transfer input to the boiler in kW .
c) Compute the thermal efficiency of the power cycle.
d) Compute the turbine adiabatic efficiency.
\qquad
2. (40 pts) Analyze the AIR turbine in the diagram at the right. Standard assumptions for a turbine apply.

Also ASSUME AIR IS AN IDEAL GAS and use the AIR TABLE VALUES. .
(a) Compute the volumetric flow rate at the turbine inlet.
(b) Compute the power output in kW .
(c) Compute the turbine efficiency.
(d) Compute the rate of entropy generation for the turbine.

$$
\begin{aligned}
& \mathrm{T}=1200 \mathrm{~K} \\
& \mathrm{P}=1200 \mathrm{kPa} \\
& \dot{m}=10 \frac{\mathrm{~kg}}{\mathrm{sec}}
\end{aligned}
$$

\qquad

Problem 3. (20 Points) Use water (i.e. $\mathrm{H}_{2} \mathrm{O}$) for the following problems.
a. Given: $\mathrm{p}=3 \mathrm{bar}, \mathrm{x}=0.4$

Find: phase, T, v
b. Given: $\mathrm{p}=1.5$ bar, $\mathrm{T}=60^{\circ} \mathrm{C}$

Find: phase, v, h
c. Given: $\mathrm{p}=5$ bar, $\mathrm{h}=3356 \mathrm{~kJ} / \mathrm{kg}$

Find: phase, T, v
d. Plot and label these 3 points on the p-v diagram below.

