Rose-Hulman Institute of Technology
 Foundation Coalition Sophomore Engineering Curriculum

Circle one:
Sanders - 01, Sanders - 02, Mayhew - 07, Mayhew - 08,

Name
CM

Exam 1

Jan 13, 2003

Problem 1	$-\quad / 45$
Problem 2	$-\quad / 40$
Problem 3	15
Total	100

Show all work for full credit.
Open book, 1 equation sheet, computer use for computational purposes.
Crunch numbers last!

Problem 1 (45 points)

Water is to be discharged from a reservoir using a horizontal cast iron pipe. The pipe is 35 m long and has a $6-\mathrm{cm}$ diameter. The pipe entrance from the reservoir is sharp-edged. The water level in the reservoir is 30 m above the centerline of the pipe. Take the density of water to be $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and the dynamic viscosity to be 1.138×10^{-3}
a) What is the velocity at the pipe exit assuming there are NO LOSSES and there is NO PUMP?
b) A pump is added to make the volumetric flow rate $0.6 \mathrm{~m}^{3} / \mathrm{min}$. A fully-open gate valve is added as a shutoff valve. Losses associated with the connecton of the pump are negligible. DETERMINE the pumping power required.

Problem 2 (40 points)
A 3-m-high, 6-m-wide rectangular gate is hinged at the top edge at A and is restrained by a fixed ridge at B . Determine the force that the ridge at B applies to the gate. The fluid is water with density $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

Problem 3 (15 points)

a) For a laminar flow in a straight pipe, when the relative roughness of the pipe increases, friction factor increases decreases stays the same
b) A turbine is a steady-state energy conversion device which is built in order to get as an output, and must be supplied with
\qquad as an input.
c) Consider a 3-kg copper cube and a 3-kg copper ball submerged in a liquid. Will the buoyant forces acting on these two bodies be the same or different? Briefly explain your answer.

