
Application Report
SPRA846 – December 2002

1

A DSP/BIOS EDMA McBSP Device Driver for
TMS320C6x1x DSPs

Software Development Systems

ABSTRACT

This document describes the usage and design of the generic TMS320C6x1x EDMA McBSP
device driver. This device driver is written in conformance to the DSP/BIOS IOM device driver
model and handles communication to and from the multichannel buffered serial port
(McBSP), and uses the EDMA to transfer the data. It can be used as a general-purpose,
standalone mini-driver to access a serial port, or alongside a codec-specific mini-driver. For
an example of how to implement a codec-specific mini-driver that uses this generic
mini-driver for data transport, refer to A DSP/BIOS PCM3002 Codec Device Driver for the
TMS320C6416 TEB (SPRA849).

The features for this device driver are:

• Multi-instance (handles multiple serial ports simultaneously)

• Cache support

• Keeps external frame sync

• Supports any EDMA sample size (8, 16 or 32 bits)

• Designed for (but not limited to) use with codec drivers

Contents

1 Usage 2.
1.1 Configuration 4.
1.2 Device Parameters 5.
1.3 Channel Parameters 5.
1.4 Control Commands 5.

2 Architecture 6.
2.1 Data Structures 6.

2.1.1 The Port Object 6.
2.1.2 The Channel Object 7.

2.2 Data Flow 8.
2.2.1 The IOM Read and Write Commands 8.
2.2.2 The IOM Abort Command 9.
2.2.3 The IOM Flush Command 9.

Trademarks are the property of their respective owners.

SPRA846

2 A DSP/BIOS EDMA McBSP Device Driver for TMS320C6x1x DSPs

2.3 External Frame Sync 10.
2.3.1 The External Frame Sync Problem 10.
2.3.2 This Driver’s Solutionl to the External Frame Sync Problem 10.

2.4 Cache Coherency 12.

3 Constraints 12.

4 References 12.

Appendix A Device Driver Data Sheet 13.
A.1 Device Driver Library Name 13.
A.2 DSP/BIOS Modules Used 13.
A.3 DSP/BIOS Objects Used 13.
A.4 CSL Modules Used 13.
A.5 CPU Interrupts Used 13.
A.6 Peripherals Used 13.
A.7 Interrupt Disable Time 13.
A.8 Memory Usage 13.

List of Figures

Figure 1 DSP/BIOS IOM Device Driver Model 3.
Figure 2 Codec Device Driver Partitioning 4.
Figure 3 The Frame Sync Problem 10.
Figure 4 The Loop Job Solution to the External Frame Sync Problem 11.

List of Tables

Table A–1 Device Driver Memory Usage 13.

1 Usage

The device driver described here is part of an IOM mini-driver. That is, it is implemented as the
lower layer of a two-layer device driver model. The upper layer is called the class driver and can
be either the DSP/BIOS GIO, SIO/DIO, or PIP/PIO modules. The class driver provides an
independent and generic set of APIs and services for a wide variety of mini-drivers and allows
the application to use a common interface for I/O requests. Figure 1 shows the overall
DSP/BIOS device driver architecture. For more information about the IOM device driver model,
as well as the GIO, SIO/DIO, and PIP/PIO modules, see the DSP/BIOS Device Driver
Developer’s Guide (SPRU616).

SPRA846

3 A DSP/BIOS EDMA McBSP Device Driver for TMS320C6x1x DSPs

Application / Framework

SIO APIsPIP APIs

PIO Adapter DIO Adapter

GIO APIs

IOM Mini-Driver(s)

Device
Driver

Chip Support Library (CSL)

Class
Driver

Mini-
Driver

On-Chip Peripheral Hardware Off-Chip Peripheral Hardware

Figure 1. DSP/BIOS IOM Device Driver Model

This device driver can be used as a general-purpose, standalone mini-driver to interface with the
McBSP on TMS320C6x1x chips using the EDMA. However, this device driver is mainly used in
conjunction with the codec-specific portion of the mini-driver to handle its data processing. In
that case, the codec-specific part only has to set up the codec and pass the required parameters
to this generic part of the mini-driver. Figure 2 shows the data flow between the components in a
system in which the mini-driver is split into a generic part and a codec-specific part.

SPRA846

4 A DSP/BIOS EDMA McBSP Device Driver for TMS320C6x1x DSPs

Application/Framework

Class Driver

Codec-Specific Part of Mini-Driver

Generic Part of Mini-Driver

Chip Support Library

Mini-
Driver

Figure 2. Codec Device Driver Partitioning

1.1 Configuration

To use this driver with a codec-specific portion to the mini-driver, the properties should be set up
for the codec device driver. In that case, the codec-specific part will set up this generic device
driver. Refer to the individual codec-specific device driver documentation on how to set up the
properties in this case.

To use this device driver as a stand-alone mini-driver, a device entry for every McBSP port
instance must be added to the DSP/BIOS Configuration Tool. Below is a description of the
properties of this device entry when using this device driver as a standalone mini-driver.

• Init function table: Type _C6X1X_EDMA_MCBSP_init

• Function table ptr: Type _C6X1X_EDMA_MCBSP_FXNS

• Function table type: Select IOM_Fxns

• Device ID: Type 0 for McBSP0 or 1 for McBSP1. This device driver supports McBSP0,
McBSP1, and McBSP2 without modifications to the source.

• Device params ptr: A pointer to your instance of the device parameter structure (see
section 1.2). This device driver has no default parameters, which means this property cannot
be left to 0x0.

• Device global data ptr: This property must be set to 0x0.

The channel parameters (see section 1.3) are passed to the device driver during run-time when
creating the device communications channel. Refer to the DSP/BIOS Device Driver Developer’s
Guide (SPRU616) for more information on how to pass channel parameters when using this
device driver with SIO.

SPRA846

5 A DSP/BIOS EDMA McBSP Device Driver for TMS320C6x1x DSPs

This device driver uses the supplied McBSP and EDMA CSL configuration structures to set up
the McBSP and EDMA, respectively.

1.2 Device Parameters

typedef struct C6X1X_EDMA_MCBSP_DevParams {
Bool cacheCalls;
Bool enableSrgr;
Bool enableFsg;
Int irqId;
MCBSP_Config *mcbspCfgPtr;

} C6X1X_EDMA_MCBSP_DevParams;

• cacheCalls: If this parameter is set to TRUE, the device driver will treat buffers issued to
any IOM channel associated with this device (port) as if they are in cacheable memory and
the L2 data cache is enabled.

• enableSrgr: If this parameter is set to TRUE, the device driver will enable the internal
sample rate generator when the McBSP is started.

• enableFsg: If this parameter is set to TRUE, the device driver will enable the internal frame
sync generator when the McBSP is started.

• IrqId: This parameter selects which IRQ number to use for the EDMA interrupt. The system
default is 8.

• mcbspCfgPtr: This parameter is a pointer to a CSL configuration structure which will be
passed to MCBSP_config() for the McBSP port.

1.3 Channel Parameters

typedef struct C6X1X_EDMA_MCBSP_ChanParams {
Uns tdmChans;
EDMA_Config *edmaCfgPtr;

} C6X1X_EDMA_MCBSP_ChanParams;

• tdmChans: This parameter should be set to the number of TDM channels the McBSP is
using for this IOM channel (e.g., 1 for mono, 2 for stereo etc.). This value will be used by the
driver to maintain the frame sync. Refer to section 2.3 for details.

• edmaCfgPtr: A pointer to a CSL configuration structure to be passed to EDMA_config() for
the EDMA channel used by this IOM channel.

1.4 Control Commands

This device driver has no run-time control commands.

SPRA846

6 A DSP/BIOS EDMA McBSP Device Driver for TMS320C6x1x DSPs

2 Architecture

This section describes the design and implementation of the device driver. The driver uses
various DSP/BIOS and CSL modules (see Appendix A), refer to TMS320C6000 DSP/BIOS
Application Programming Interface (SPRU403) and TMS320C6000 Chip Support Library API
Reference Guide (SPRU401). The technical details of the McBSP and EDMA are available from
TMS320C6000 Peripherals Reference Guide (SPRU190).

2.1 Data Structures

This driver uses two internal data structures, a port object and a channel object, to maintain its
state during execution. This device driver is multi-instance, which means it can handle several
McBSP ports running simultaneously. Every McBSP used needs a port object instance
associated with it to maintain its state. In turn, every port has two associated channel object
instances (one for input and one for output) which holds the IOM channel states during
execution. The contents of these structures are described below.

2.1.1 The Port Object

/* Number of IOM channels per port (must be 2, one for input and one for out-
put) */
#define NUMCHANS 2
/* Structure containing port specific variables */
typedef struct PortObj {
 Uns inUse;
 Int devid;
 Bool cacheCalls;
 Uint32 enableMask;
 MCBSP_Handle hMcbsp;
 ChanObj chans[NUMCHANS];
} PortObj, *PortHandle;

• inUse: This variable is set when this port is configured so that it can fail if another attempt to
configure the port is made.

• devid: The device driver stores the devid sent to it during configuration in order to know
which port it is during execution (McBSP0 or McBSP1).

• cacheCalls: The device parameter, cacheCalls, passed to the device driver during
configuration is stored here during execution. The parameter is explained under section 1.2,
device parameters.

• enableMask: This variable holds the mask used by the CSL function MCBSP_start(), and
consists of the result of the operation (enableSrgr | enableFsg) on the corresponding device
parameters.

• hMcbsp: This variable holds the CSL handle returned by the CSL function MCBSP_open()
for this port, and is used to access the MCBSP during execution.

• chans: An array holding the channel objects associated with this port.

SPRA846

7 A DSP/BIOS EDMA McBSP Device Driver for TMS320C6x1x DSPs

2.1.2 The Channel Object
/* Maximum number of EDMA jobs linked at a time (must be 2) */
#define MAXLINKCNT 2
/* Structure containing IOM channel specific variables */
typedef struct ChanObj {
 Uns inUse;
 Int mode;
 struct PortObj *port;
 EDMA_Handle xferPram;
 EDMA_Handle pramTbl[MAXLINKCNT];
 EDMA_Handle prevPramPtr;
 EDMA_Handle loophEdma;
 IOM_Packet *flushPacket;
 IOM_Packet *abortPacket;
 IOM_Packet *packetList[MAXLINKCNT];
 QUE_Obj packetQueue;
 Int submitCount;
 Int writeIndex;
 Int readIndex;
 Int tcc;
 IOM_TiomCallback cbFxn;
 Ptr cbArg;
} ChanObj, *ChanHandle;

• inUse: This variable is set when this IOM channel is configured so that it can fail if another
attempt to configure the IOM channel is made.

• mode: When a channel is created, its mode is specified (i.e., input or output). This variable
holds this mode, but uses internally specified values instead of the specified IOM mode
(IOM_INPUT or IOM_OUTPUT). The reason why internal variables are used is that it needs
to use the mode as an index, but cannot use the IOM modes since they are bit masks.

• port: This variable holds a pointer to the port object which owns this channel.

• xferPram: This CSL EDMA handle is returned when opening the EDMA channel with the
CSL function EDMA_open(). It holds the currently executing EDMA job during execution.

• pramTbl: This array holds EDMA parameter RAM, used for linking and double buffering.

• prevPramPtr: This parameter RAM is used to hold the previous EDMA job. Its use is
described in section 2.2.

• loophEdma: This EDMA parameter RAM holds the Loop EDMA job. The use of the Loop
job is described in the section 2.3.

• flushPacket: Since this device driver uses an asynchronous flush command, this is where
the flush packet sent to the IOM channel is stored when such a command has been issued.

• abortPacket: Since this device driver uses an asynchronous abort command, this is where
the abort packet sent to the IOM channel is stored when such a command has been issued.

• packetList: An array holding the IOM packets which are linked in the EDMA channel.

• packetQueue: A software queue holding issued IOM packets which are issued but not
linked in the EDMA channel.

• submitCount: This variable holds the number of packets submitted (issued) to the channel.

SPRA846

8 A DSP/BIOS EDMA McBSP Device Driver for TMS320C6x1x DSPs

• writeIndex: Used by the mdSubmitChan() function to keep track of which space in the
packetList and which EDMA parameter RAM from pramTbl it should use for an issued
packet.

• readIndex: Used by the ISRs to keep track of which IOM packet has been completed.

• tcc: This variable holds the EDMA transfer complete code used by this channel.

• cbFxn: The callback function specified when creating the IOM channel is stored here. It is
used to send an IOM packet to the upper layers.

• cbArg: The callback argument specified when creating the channel is stored here. It is used
in conjunction with the callback function to send an IOM packet to the upper layers.

2.2 Data Flow

This section describes how a buffer is processed and passes through this device driver. When
an IOM packet is issued to an IOM channel, it is first checked to see which command has been
issued. This driver supports the commands IOM_READ, IOM_WRITE, IOM_ABORT and
IOM_FLUSH. When the term “link” is used below, it refers to the EDMA’s ability to link EDMA
jobs to each other; see TMS320C6000 Peripherals Reference Guide (SPRU190).

2.2.1 The IOM Read and Write Commands

The device driver handles read and write similarly. The mode of the IOM channel to which the
packet was issued decides whether it is a read or a write command, not the IOM packet
command field.

First there is a check to see if there is space available to link a new EDMA job in the
corresponding EDMA channel (A maximum of two at a time, see section 3). If not, the IOM
packet is put on a queue (packetQueue) until there is space available for the job. If there is
space available, the packet is put on the packetList and available parameter RAM for the job is
allocated. Depending on whether this is an input or an output channel, the destination or the
source field is set with the packet’s address field respectively. If cacheCalls is set to TRUE, the
cache is flushed or cleaned for the buffer. This is described in depth in the section 2.4.

This driver supports any element (sample) size the EDMA supports (i.e., 8, 16 or 32 bits). The
IOM packet uses nmadus (number of minimal addressable data units) for its size field, which is 8
bits on a TMS320C6xxx. When setting the count (CNT) field in the EDMA parameter RAM, the
device driver reads the ESIZE parameter in the OPT field of the EDMA configuration used by
this IOM channel to calculate the number of samples a packet is (which is what the CNT field
needs).

The driver then links this EDMA parameter space to the Loop EDMA job. Normally an EDMA job
would link to a NULL parameter set, but we use the Loop EDMA job to maintain the frame sync.
This is described in detail in the section 2.3.

The device driver then links this new job to the currently executing job. Looking at Figure 3
below, this means that the currently executing EDMA job, which was B before, now becomes A,
and the new EDMA job becomes the new B. While linking these EDMA jobs, we disable the
EDMA channel to make sure the current job doesn’t complete before the linking is done.

When this setup is done, the EDMA will start the new EDMA job corresponding to the issued
IOM packet (input or output depending on the IOM channel) when the currently executing job
terminates and invokes the job it links to, which is the new job.

SPRA846

9 A DSP/BIOS EDMA McBSP Device Driver for TMS320C6x1x DSPs

When an EDMA job completes, an EDMA interrupt will occur. This driver uses the EDMA
dispatcher from the CSL to execute the ISR corresponding to the TCC that was asserted. The
use of the EDMA dispatcher allows us to have separate ISRs for input and output (isrInput and
isrOutput), but since the driver is multi-instance, the device driver still has to check, which job
was completed. Even though the device driver has separate ISRs for input and output, some
common code is put in the function isrCommon to save code space.

The ISR fetches the completed input or output EDMA job’s corresponding packet from the
packetList in the channel object, marks it as completed and then calls the callback function on
this packet to send it to the upper layers. When the callback is done, the ISR checks to see if
there are any issued packets that haven’t been linked in. If there is, the device driver gets them
from the packetQueue in the channel object and links them in the same way as if they were an
issued new job.

2.2.2 The IOM Abort Command

When an abort command is issued, the device driver checks if there are any buffers currently
issued to the IOM channel. If there is not, the device driver returns IOM_COMPLETED
synchronously. If there are buffers issued to the IOM channel, the device driver saves the issued
abort packet in abortPacket. It then links the currently executing job to the Loop job to make sure
only one more “real” EDMA job completes. After this, the device driver returns IOM_PENDING.

This means that the driver does an asynchronous abort when there are buffers issued to the
IOM channel. The reason why the device driver cannot abort the currently executing EDMA job
and return all packages as aborted is that the device driver might lose the frame sync if this is
done (see section 2.3).

When an ISR is called and an abort packet has been issued to the corresponding IOM channel
(abortPacket is non-NULL), the device driver calls the callback on all issued packets (both from
packetList and packetQueue) with the packets’ status field set to IOM_ABORTED to notify the
above layers that their data is not to be trusted. It then resets the IOM channel state (readIndex,
writeIndex and submitCount) before calling the callback on the abort packet itself (with status
IOM_COMPLETED) and finally sets abortPacket to NULL.

2.2.3 The IOM Flush Command

A flush command is handled similarly to an abort command. This device driver treats a flush of
an IOM input channel exactly as if abort was called on the channel. Flushing an IOM output
channel is also very similar to an abort command in that it’s asynchronous if packets have been
issued to the IOM channel, and synchronous if not. However, in the flush command case, the
device driver does not change the linking of the EDMA when flush is called on an IOM output
channel. Nor does it discard the previously issued IOM Packets queued by the device driver. It
merely sets the flushPacket to be the submitted flush packet and let’s the currently issued
packets complete. When the ISRs execute they will check to see if the last job has been
completed (submitCount is 0) and if there is a flush packet (flushPacket is non-NULL). If so, the
device driver calls the callback on the flush packet with status set to IOM_COMPLETED.

SPRA846

10 A DSP/BIOS EDMA McBSP Device Driver for TMS320C6x1x DSPs

2.3 External Frame Sync

This section describes the problem with an external frame sync, and how this driver deals with
this problem.

2.3.1 The External Frame Sync Problem

This problem occurs when the McBSP is externally clocked and receives its clock from, for
example, a codec. Figure 3 shows the samples the DSP is receiving from a stereo codec that
generates the frame sync. Every left-right pair is a frame. A breakpoint occurs after a left
sample, which means the DSP is halted. When the DSP resumes execution, it expects a right
sample, but since the codec has continued to send samples while the DSP was halted, there is
only a 50% chance (in the stereo case) that this will be the case. If, as in Figure 3, another left
sample is received instead of a right sample, the channels will be switched. This means that if
you were listening to music from a stereo codec when the halt occurred, there is a 50% chance
that you will be hearing the music meant for your left ear in your right ear and vice versa. Note
that the risk of failure increases with the number of McBSP TDM channels used.

Left Right Left Right Left

Breakpoint occurs Execution resumes

Figure 3. The Frame Sync Problem

The problem occurs in the transmit case as well, since the stereo codec will continue receiving
while the DSP is halted, and it’s only 50% chance that the DSP will give the codec a sample
from the channel the codec expects to receive it from when execution is resumed.

2.3.2 This Driver’s Solutionl to the External Frame Sync Problem

Figure 4 shows this drivers solution to the frame sync problem. It shows two normal data EDMA
jobs (A and B), where A is linked to B. Normally B would be linked to a null job, which would
terminate the EDMA channel, but instead we link B to a Loop job. For transmit, this Loop job
sends zeros to the McBSP, and for receive the Loop job receives data into a buffer, a buffer
which is never processed. The number of elements the Loop job transmits is given as a channel
parameter (tdmChans), and depends on how many TDM slots the McBSP is using. For the
stereo codec mentioned above, this value would be two. The Loop job does not generate a
TCC, which means it will not generate an EDMA interrupt upon completion.

SPRA846

11 A DSP/BIOS EDMA McBSP Device Driver for TMS320C6x1x DSPs

Data job A Data job B

Loop job

Figure 4. The Loop Job Solution to the External Frame Sync Problem

Note: The McBSP must be set to “free running during emulation halt” for this solution to work. If
it’s not the McBSP will not continue to run when an emulation halt occurs (a breakpoint has been
hit), which is required for the EDMA to eventually link in the Loop job so that the device driver
can detect an emulation halt.

This means, that when a breakpoint occurs when A is running, the McBSP will continue to
transfer data. When A is done, B will continue since A is linked to B. When B is done, the Loop
job starts. Since the Loop job is linked to itself, it will run continuously until another EDMA job is
linked in. When execution is resumed, one of the ISR:s will be executed and will notice that the
Loop job is running and that more than one buffer has been issued (submitCount > 1). This can
only happen if an emulation halt occurred while A was executing. It will link the currently running
EDMA job (which is the Loop job) to A. This means that two buffers (A and B) that were issued
before the breakpoint occurred are reused. This is done because the application doesn’t know
that a breakpoint has occurred, and this way we help preserve double buffering for the
application (if used). Note that in order for this reuse of buffers to work the device driver not only
links the currently executing job to the new job when a new IOM packet is issued to an IOM
channel. It also links the corresponding parameter space (saved in prevPramPtr) to the new job,
in order for the device driver to “remember” its links.

However, if a breakpoint occurs when B is being executed, we have no way of telling whether a
breakpoint has occurred, or if the channel is being starved from the above layers. The situation
where the ISR finds that the Loop job is running and one (not two or more buffers as above)
buffer is currently issued to the channel could happen for two reasons. It could either mean that
B was terminated successfully and there is nothing more to send, since the EDMA linking
feature will have the Loop job running when the ISR is called for B. It could also mean that an
emulation halt has occurred while B was transmitting, and the execution is now resumed. The
driver treats this situation as if the channel has been starved, and does not reuse B (but calls the
callback on the IOM packet as usual).

When a communication channel is created (input or output) for a device, an EDMA channel is
set up and started with the Loop job. This means that after an IOM channel is created, there is
data going to or from the McBSP even before any buffers are issued to the channel. When the
first IOM packet is issued it’s buffer will be linked to the currently executing job (the Loop job),
and start as soon as the Loop job is finished.

By always forcing the EDMA transfer a multiple of tdmChans elements of data, the frame
synchronization with the codec will be preserved through execution.

SPRA846

12 A DSP/BIOS EDMA McBSP Device Driver for TMS320C6x1x DSPs

2.4 Cache Coherency

If the buffers that are submitted to the driver are in cacheable memory (typically SDRAM), and
the L2 data cache is enabled, the driver takes care of cleaning and flushing the cache
accordingly. This has to be done since the EDMA accesses external memory directly through
the EMIF, while the CPU goes through the cache when accessing the data. To enable the
driver’s cache coherency code, set the cacheCalls device parameter to TRUE. The device driver
will then flush output buffers and clean the input buffers from cache when the buffers are
submitted.

Both flushing the cache for the input buffers and cleaning the cache for the output buffers are
done when the IOM packet (with the buffer) is issued. This is natural for output buffers, but one
might think that cleaning the cache for input buffers should be done in the ISR upon completion.
This is done when the IOM input packet is issued to reduce the overhead of the ISR and
because the clean of a TMS320C6x cache also implies a write-back of dirty data. Since the
application gives control of the packet to the device driver when issuing an IOM packet, this
should not be a problem.

If buffers are placed in external memory for use with this device driver they should be aligned to
a 128 bytes boundary. In addition the buffers should be of a size multiple of 128 bytes as well for
the cache to work optimally.

3 Constraints

This device driver doesn’t link more than two EDMA jobs at a time (double buffering). For
applications that burst small buffers at a high bit rate this can be a problem (since the latency of
linking in a new EDMA job after an EDMA job has completed can be too high). This should be
very rare though. Note that the application can issue more than two IOM packets to any IOM
channel at a time. The device driver will store them in a queue until space is available.

4 References

All these documents are available from http://www.ti.com.

1. A DSP/BIOS PCM3002 codec Device Driver for the TMS320C6416 TEB (SPRA849).

2. DSP/BIOS Device Driver Developer’s Guide (SPRU616)

3. TMS320C6000 DSP/BIOS Application Programming Interface (SPRU403)

4. TMS320C6000 Chip Support Library API Reference Guide (SPRU401)

5. TMS320C6000 Peripherals Reference Guide (SPRU190)

SPRA846

13 A DSP/BIOS EDMA McBSP Device Driver for TMS320C6x1x DSPs

Appendix A Device Driver Data Sheet

A.1 Device Driver Library Name

• c6x1x_edma_mcbsp.l62 for TMS320C621x and TMS320C671x DSPs.

• c6x1x_edma_mcbsp.l64 for TMS320C641x DSPs.

A.2 DSP/BIOS Modules Used

• HWI – Hardware Interrupt Manager

• QUE – Queue Manager

• IOM – I/O Manager

• ATM – Atomic Manager

A.3 DSP/BIOS Objects Used

• QUE_Obj

A.4 CSL Modules Used

• McBSP module

• EDMA module

• IRQ module

• CACHE module

A.5 CPU Interrupts Used

• EDMA interrupt

A.6 Peripherals Used

• McBSP

• EDMA

• EMIF

A.7 Interrupt Disable Time

Maximum time that hardware interrupts can be disabled by the driver:

• 408 cycles – teb6416_edma_pcm3002 codec device driver

• 283 cycles – dsk6x11_edma_ad535 codec device driver

These measurements are taken using the compiler option –O3.

SPRA846

14 A DSP/BIOS EDMA McBSP Device Driver for TMS320C6x1x DSPs

A.8 Memory Usage

Table A–1. Device Driver Memory Usage

Uninitialized Memory Initialized Memory

CODE — 6368 (8-bit bytes)

DATA 408 (8-bit bytes) 104 (8-bit bytes)

NOTE: This data was gathered using the sectti command utility.
Uninitialized data: .bss
Initialized data: .cinit + .const
Initialized code: .text + .text:init

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2003, Texas Instruments Incorporated

