Ray tracing intro + camera

COMPS75

Overview

e Homework
e So far...
e Ray tracing intro

So far...

Color representation
o RGB floats internally
o RGB bytes stored

Mesh representation
o Wavefront OBJ files
o Triangle index + more

e Scene representation
o Flat list
Camera and sampling
o Simple sampling and reconstruction

Ray tracing overview

e Visibility algorithm

o Often used for rendering
e Input: objects, lights, camera
e Output: 2D image

Ray tracing overview

e Simplified overview

e For each pixel...

Generate ray

Check if ray hits any objects
If ray hits, generate a color
Store color for the pixel

O O O O

\/
>,'\< light source

viewer (eye)

X :
I’/Gw~ 3
\

visible point

objects
in scene

Ray tracing overview

Ray generation

Position camera in scene
Create image plane
Sample positions on image plane

[]
[]
[]
e Create ray for each position

Ray tracing overview

Check ray hits

e Loop over all objects
e Test ray object intersection

e Divide objects into groups
e Test group intersection, then object intersection

Ray tracing overview

Get pixel color

e Record object hit data
e Use hit data and object color to get color

e Check if hit point is in shadow
e Reflect new ray if surface is mirror
e Other shader operations

Ray tracing overview

Store pixel color

e Tone map color
e Apply gamma if desired
e Store image in memory/disk

Ray definition

e Half line from point
e Has origin and direction
e Helpful to reference distances on ray

\%Vﬁ t‘= 2

1
-~""p d t=1

Ray definition

3D parametric line
r=p+u
r(r) = e+ t(s-e)

r is the set of points on the ray

p is the origin (camera)

d is ray direction (s-e)

e and s are related to the camera (more later)
t is the ray parameter ('length’)

Ray generation

e From camera discussion
o Orthographic, perspective
o Image plane
o View direction

Ray generation

view rect .
& / view plane

viewpoint

pixel
position

pixel _
position viewing ray viewing ray

Orthographic Perspective

Ray generation

e Orthonormal basis
o Represents camera frame in 3D
o 3 orthonormal vectors: u, v, w
o Camera across, up, and look vectors

e Using right hand rule, look may be backwards

Ray generation

Orthographic

e Compute point s on image plane
e Create ray using s as origin

p=s;d=d,
r=p+ud

Ray generation

Orthographic camera frame

s=e+uu-+ovv
p=s;d=—-w
r(t) =p+td

Ray generation

Perspective

e Image plane is not at camera position
e Distance controls focal length/field of view
e e is origin, s controls direction

p=e
r()=p+ud

Ray generation

Perspective camera frame

s=e+uu+ovv—dw
p=e d=s—e
r(t) =p+td

Ray generation

e Image to camera mapping (u, v)
o [and r are the distance of the left and right edges
o tand b are the distance of the top and bottom edges
o (i,j) is the position in the image

u=1+(r—10)GE+0.5)/n,
v=>b+(t—b)(j +0.5)/n,

Ray generation

Image to camera mapping (u, v)
u=1+(r—=00GE+05)/n,
v=>b+(t—b)(j +0.5)/n,

y v=t
¥
Q, o] o] o. .
©.2) 13,2)
0] o o o
(0.1)
v=b
X
0{0. ol ol %ol %o i T |:T
ye S
Image pixels View plane positions

Object intersection

e Intersect ray with sphere
o Use quadratic formula to solve equation

—d-(p-c)£/[d-P-0P - (@ d((p-0)-(p—0) - &)
(d-d)

t=

d is the ray direction

p is the ray origin

¢ is the sphere center

R is the sphere radius

t is the ray parameter of the hit

O O O O O

Code overview

e Basic C++ code will be posted
o OBJ loader
o Starting vector class

o

o

Starting color class
SDL frontend

Code overview

e Helpful classes

(o]

0O 0O 0O 0O 0O 0O O o

o o

Vector

Ray

Hit point data
Camera

Ray generator
2D image buffer

Shape: spheres...

Material: surface color...

Light: intensity...
Color
Shader

0O 0O 0O 0O OO O 0O O oo

Scene data

Shape collection
Material collection
Light collection

Ray tracer: single ray
Ray renderer: ray loop
Shape intersection
Model loader

Option loader

Image save code

Code Overview

e Where to start?

o

o

o

o

o

Model camera
Generate rays

Print x, y, z as image
Must be able to load camera!
Use print outs or image dump to check

Code Overview

e Write small functions!
e Test each part as you go

Code Overview

Load scenes
Generate rays
Sphere intersect
Triangle intersect
Color shading
Shadows
Reflections
Image output

