PH 325 Hanging Chain Experiment    March 13, 2003    MJM

rev Feb 8, 2005

In this experiment, a chain is hung vertically from a support which can be oscillated sinusoidally. The idea is to oscillate the support, and locate resonances of the chain, guided by the theory. 

· You are to measure the lowest three (four if you are feeling energetic) resonant frequencies (where one observes a large standing wave). 

· For each resonant frequency you are to locate the nodes of the chain as well as you can, and estimate the uncertainty in the location of each node.

Theory.













driver

The coordinate system to be used is z=0 at the free end of the 

chain, and z=L at the top of the chain where it is being driven.
      x= 1      z=L

The tension T in the chain increases with z, due to the increasing

weight of chain it must support:



T = mg z/L = ( gz ,








hanging chain

where m is the mass of the chain, L is its length, and ( is the 

mass/length.












            r (lateral displ)

The lateral displacement of the chain will be called  r. The 

lateral force component at some point on the chain will

be given approximately by T (y/(x  as long as the angle

     x=0
       z=0

of the chain to the vertical is small.

Doing the F = ma routine on a small section of chain we obtain the following equation for small-angle motions of the chain


(/(z ( ( g (r/(z  ) = ( (2r/(t2 .







(1)

Under steady-state driving conditions, every part of the chain oscillates in simple harmonic motion,


r(z,t) = ro(z) cos ((t + ().

This (and cancelling the ('s) simplifies (1) to become


(/(z (g (r/(z  ) = -(2 r  .







(2)

From here on out we are regarding r as a function of z. We now go to a new variable


x = ((z/L).

This means x is dimensionless and runs from 0 to 1 as we go from the free end to the driven end of the chain.  The lateral displacement r will now be just a function of x.

With the substitution for x into equation (2) we obtain the following equation.


(2r/(x2 + 1/x (r/(x + K2 r = 0 ,







(3)

where K = 2( ((L/g). This equation is bessel's equation of order zero. Substituting 


y = Kx 

gives yet another version of bessel's equation,


(2r/(y2 + 1/y (r/(y +  r = 0 .








(4)

Solutions of (4) are bessel's functions of order zero


r = Jo (y)

We will be interested in the places where r=0, the 'roots' of Jo(y), which occur at


yroot = 2.4048, 5.5201, 8.6537, 11.7915, etc.

Things are a little bit upside down because we start from the free end of the chain at z=0. Notice that the term


1/y (r/(y

is going to blow up at the free end of the chain where y=0!  But not necessarily. If the slope (r/(y is zero at the free end, catastrophe can be avoided. 

We find resonances where at the free end we have zero slope, and at the fixed end (well, mostly fixed, since we are driving it there) the displacement is zero. This works out fine because Jo does have zero slope at y=0.

As part of the analysis part of this experiment, you are to do a Runge-Kutta 2nd order numerical integration of equation (4). There are instructions attached to this page on how to set up an RK2 numerical integration. You start at y=0 with r=1 and the slope (r/(y (velocity) equal to zero. The second derivative (acceleration) at each step is (from (4)). Check at least two of the zeros of Jo given above against your spreadsheet, and report the results.


(2r/(y2 =  -r   -1/y (r/(y .

Please turn in the bessel function graph with your report of this experiment.

The report should describe what you did, and include a sketch. Include a table of results, indicating the frequency of each resonance, and the experimental value (including uncertainty) for the location of each node. (The lowest resonance has only the 'node' where the string is driven.) If you can see how to calculate the positions of the nodes, please do so, and compare your calculations to the measured node positions.

