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Reflection and Refraction.
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rev b

Some of this is review and some of it is new.
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For refraction at a plane surface between n1 and n2                 E1r
we have Eparallel and H parallel continuous at the




E2
boundary. (All B's are out of the page)
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This means  
cos (1 (E1 - E1r)  = cos (2 E2
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and     

(E1 + E1r) /((v1) = E2 / ((v2 )






 

Then

E1 - E1r = ( E2,      where ( = cos (2 / cos (1
and

E1 + E1r = ( E2,      where ( = n2/n1 = v1/v2.

By adding the equations we find that 2E1 = ((+() E2 .

The time averaged rate of energy flow is the poynting vector   <S> = 1/2 Re (ExH*).

The transmission coefficient T is the ratio of outgoing power/area to the incoming power/area in the z direction


T = z^(Re(E2xH2*)/z^(Re(E1xH1*)

Since for plane waves  k1 x E1 = ( ( H1  ,  E1 x H1* = k1 (E(E*)/((() = k1 |E1|2/((().

Now the transmission coefficient can be written (taking the same ( on both sides)


T  =  [Re{ (z^(k2^ ) |E2|2 /v2 } ]/[Re { (z^(k1^ ) |E1|2 /v1} ] ,  or


T = Re(cos (2 )/ Re{cos (1 } |E2/E1|2 n2/n1   = Re(() ( |E2/E1|2  

When n1>n2 and  (1 exceeds the 'critical angle', sin (2 >1, and is real. 

We'll let (2 = a + ib, and write                                 sin (2 = sin (a+ib) = sin a cos (ib) + cos a sin (ib).

Since cos(ib) = cosh(b), and sin(ib) = i sinh(b),     sin (2 = = sin a cosh (b) + i cos a sinh b.

Sin (2 is real, so a must be (/2 in order that the imaginary term vanish. Then sin (2 = cosh b.

And cos (2 is imaginary:  cos (2 = ((1- sin2 (2) = ((1- cosh2 b) = i sinh b.

Then T = 0 when n1>n2 and (1 >(c .

Beyond the critical angle for (1,  sin (2>1 and cos (2 is imaginary. Then we may write for the propagation vector in n2,


k2 = y^ k2y + z^ k2z = y^ k2 sin (2 + z^ k2 cos (2 = k2 (y^ sinh b + i z^ cosh b )

The form of a plane wave in n2 is


E2 = E2o exp( i k2(r - i(t)  = E2o exp( i k2 y cosh b - i(t ) exp (- k2 sinh b z )

This wave propagates normally in the y-direction, parallel to the interface, but decreases exponentially in the z-direction, away from the interface.
In terms of (1 this could be written


E2 = E2o exp( i k2 y n1/n2 sin (1  - i(t ) exp (- k2 z (((n1/n2 sin (1)2 - 1) )

Exercise. Show at normal incidence that there is 4% reflection, 96% transmision 

when n2 = 1.5 and n1  = 1.

Two boundaries.
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Now we have an incident and 

reflected waves  in n1, and n2, 
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and a transmitted wave in n3.
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We again take E in the plane 



(1
of incidence, and H coming 

out of the page, as we did earlier.

    E1






                    z = 0

         z = a

At z = 0 we must match Eparallel and Hparallel at all y values. For example

         E1o cos (1 exp( i k1y y) -E1ro cos (1r exp( i kiry y) = E2o cos (1 exp( i k2y y) -E2ro cos (2r exp( i k2ry y)  

This equation includes different angles ( for the reflected and transmitted waves, but in order to satisfy this equation ( the time dependence has been omitted) at all y values on the boundary, we must, absolutely must have


k1y = k1ry = k2y = k2ry

k1 sin (1 = k1 sin (1r = k2 sin (2 = k2 sin (2r 
Satisfying the boundary conditions requires that (1 = (1r and that (2 = (2r. And it demands that Snell's law be true as well, since k1 = n1 ko, and k2 = n2 ko ,  where ko is k vector in free space.

At z=0 we have, when all is said and done


cos (1 ( E1 - E1r)   = cos (2 (E2 - E2r)    
(  E parallel  continuous )


(E1 + E1r)/((v1)  = (E2 +E2r)/((v2) 

( H parallel continuous)

Or, using our earlier notation


E1 - E1r = (12 ( E2 - E2r),     and E1 + E1r = (12 (E2 - E2r)  .  


{ (12 = cos (2/ cos (1 ,   (12 = n2/n1 }

Adding the equations gives 

E1 = 1/2 [ ((12+(12) E2 + ((12-(12) E2r ] .

Subtracting them gives  

E1r = 1/2 [ ((12-(12) E2 + ((12+(12) E2r ] 

We could regard these two as a matrix equation with column vectors 

(1 = (E1, E1r) and  (2 = (E2, E2r)   connected by a matrix     



[   ((12+(12)       
((12-(12)     ] 


(12 = 1/2  
[  


                  ]



[  ((12-(12) 

((12+(12)   ]

so that   (1 = (12 (2   .

When we go on to z = a to match the boundary conditions we get two more equations. These will involve E2 and E2r, as well as E3 and (if it existed) E3r. There would then be another matrix equation we could write down:


(2 = (23 (3   .

The two matrix equations could be joined, to give


(1 = (12 (2  =  (12  ((23 (3)  = ((12  (23) (3 = (13  (3.

The transmission coefficient in this situation involves E3 and E1. In particular


T = Re(cos (3/ cos (1) n3/n1 |E3/E1|2  .

From the overall matrix equation we have E1 = ((13)11 E3 + ((13)12 E3r .

Where there is no reflection, E3r = 0, and  E3/E1 = 1/((13)11 

Thus it is possible to construct an overall matrix (if for a multi-layered medium, and compute a transmision coefficient


T = Re(cos (f/ cos (i) nf/ni /|((if)11|2 .
This is an option for complicated situations, and we will not immediately use it here, just point out that there is power in the matrix approach.

Now we will match things at z = a.  For E2 we will have


E2 = E2o exp ( i k2y y + i k2z a -i(t)  = E2o exp ( i k2y y + i k2 cos (2 a -i(t)  

There will be similar terms for E2r and for E3:


E2r = E2ro exp ( i k2y y - i k2z a -i(t) 


E3 = E2o exp ( i k3y y + i k3z a -i(t) 

Notice that all y-terms match because of the boundary condition requirement (that gives us Snell's law)

All terms have the same time dependence, so we only have to write down the z-part of the equation. Notice also that the z-component of k for the reflected wave E2r has a negative sign, because it moves to the left.

Matching Eparallel at the boundary z =a we have


cos (2 ( E2 exp(i k2z a) - E2r exp (-ik2z a) ) = cos (3  E3 exp( ik3z a)

We could shorten this to read


E2 f2 - E2r/f2 = (23 E3 f3
using the notation (23 = cos (3/cos(2, f2 = exp(i k2z a), and f3 = exp(i k3z a) .

When we match Hparallel at z = a we find that


(E2 f2 + E2r/f2)/((v2) = E3f3/((v3),

which may be reduced to


E2 f2 + E2r/f2 = (23 E3 f3
Solving these for E2 and E2r in terms of E3 is done as before , by adding and subtracting.


E2 = 1/(2f2) E3 f3 ((23 + (23) , and   E2r = f2/2 E3 f3 (-(23 + (23)

Putting these together with 
E1 = 1/2 [ ((12+(12) E2 + ((12-(12) E2r ] ,   we find


E1 = E3 f3 /4 [ ((12+(12) ((23 + (23) /f2 + ((12-(12) f2 (-(23 + (23) ] .

where



f2 = exp(iF),  

F = k2z a,    



(12  = cos (2/cos(1,     (23 = cos (3/cos(2, 



(12 =n2/n1, 

(23 =n3/n2 .

Exercise: show that when F is real, 


T = n3/n1|E3/E1|2 = 4 n3/n1/{  ((12(23+(23(12)2 + ((232-(232)((122-(122) cos2(F)  }

Exercise:  For normal incidence, show that T=1 when F = (/2 and n22 = n1n3 . (Non-reflecting coating.)

When (1 is beyond the critical angle, with n1 = n3 >n2, there is some transmission through the 'barrier'.  In this case, F is imaginary (due to cos (2) and so are both ('s (again due to cos (2). From here you can show that


T = 4/((13 + (13)2 /[ 1 - G sin2 F ],

where G = ((122 - (122) ((232 - (232)/((13 + (13)2 .

With n1 = n3 >n2, (23 = 1/(12, (23 = 1/(12,  (13 = 1, (13 = 1.  Then we have


T = 1/[ 1 + 1/4[((122 - (122)2/(122/(122 ] sin2 F ].

Cos (2 is pure imaginary, so we will call it


cos (2 = i C = i (( n1/n2 sin (1)2 - 1) ,

Now (12 = cos (2/cos(1 = i D,   where D = (( n1/n2 sin (1)2 - 1) / ((1-sin2 (1 )

Then we have F = i C k2 a,   and sin2 F = - sinh2 (C n2 ko a), giving


T = 1/[ 1 + 1/4(Q+1/Q)2 sinh2 (C n2 ko a)], 

where Q = Dn1/n2 , and ko is the propagation vector in free space.

Exercise:  Calculate T for n1 = 1.4, n2=1, (1 = 60o, koa = 2(.   Repeat for koa = 4(.

