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Electromagnetic Plane Waves from Maxwell's Equations
MJM
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AGENDA


Show Maxwell equations (no free charges) lead to the wave equation for E and also for B or H.


Show that S = ExH (the  poynting vector) is energy/area/time = intensity (Poynting's theorem)


Show in a plane wave that E(B = 0, that k(E = k(B = 0  (k is the 'propagation vector)


Show the time average intensity is <S> = ½ Re{E x H*}

Reflection at a plane boundary (nonmagnetic materials; (1 = (2 ; no free charges



Show that application of E|| continuous and H|| continuous gives snell's law for refraction



Normal incidence: reflection and transmission coefficients



Oblique incidence:  R and T for each polarization component separately



Oblique incidence: critical angle; no energy flow ( to boundary beyond critical angle


Reflection at two boundaries:  non-reflective coating at normal incidence; 






 frustrated internal reflection


Slab optical waveguide (if time permits) showing propagation 'modes' at certain angles

PLANE WAVES


The form of a plane wave is 

exp(i k(r - i(t), where k is the 


      r



  k
'propagation vector'. The sketch



     r(   

at the right shows the propagation

vector k, and a position vector 

r made up of a part r|| parallel 


     r||
to k, and a part r(, perpendicular

to k.

For a given value of r||, the phase of 

the 'plane' wave is kr||, and does not

depend on r( . The locus of points

phase of wave = k(r - (t

with the same r|| and any r( is a

plane: all points in this plane have

r = r|| + r (
the same phase. The sketch shows 

dotted lines parallel to each other

For a given r||, points with any r( lie in a plane

which could perhaps be the crests

and all these points of the wave have the same phase

of an advancing 'plane wave'.


which is kr|| -(t.

Maxwell's equations to the wave equation for E, B, etc.  


((B = 0
((D = (f
(xE = -(B/(t

(xH = Jf + (D/(t .


Start by taking the curl of one of the curl equations:    (x((xE) = (x(-(B/(t) 

We will work with linear materials so that B = (H  and D = (E, and also deal with no free charge or free currents.

(x((xE) = (((((D/() - (2E .

(x(-(B/(t) = -(/(t((x(H) = -(-(/(t [(D/(t] = -(( (2E/(t2 .

Putting the two together (remember ((D = 0 because of no free charge) gives a 'wave equation'


(2E - (( (2E/(t2   = 0
.








(1)

This is supposed to be the equation of a 'travelling wave' of the form


E = Eo exp(i k(r - i(t),  where Eo is a constant vector .

We plug this into the wave equation. First


(2 E = Eo ((2/(x2 + (2/(y2 + (2/(z2){exp ( i(kxx + kyy + kzz - (t)) .

We have written out k(r  with the components (kx, ky, kz) of k  and the components (x,y,z), of r.

What happens is that 


(2 E = Eo (-kx2 -ky2 - kz2){exp ( i(kxx + kyy + kzz -(t))  = -k2 Eo exp(i k(r - i(t).

When we do the righthand side we have 

(( (2E/(t2    = (( (2/(t2   Eo exp(i k(r - i(t) = -(2 (( Eo exp(i k(r - i(t).

The wave equation (1) is satisfied provided that k2 = (2 (( .  If we associate k = 2(/(, and ( = 2(f,

this condition is seen to be  

(f = 1/(((()  = v 

the propagation velocity of the electromagnetic plane wave.  We know that in vacuum 

vvacuum = c = 1/(((o(o) .

The 'refractive index is 




n = c/v = (([((()/((o(o)]

With non-magnetic materials so that (o = (, and recalling that ( = (r (o,  we find a simple result




n = ((r

(nonmagnetic materials)

We could find a wave equation for B or H in the very same form:


H = Ho exp(i k(r - i(t) 

and by taking the curl of the curl H equation find that H or B satisfies the same wave equation.

Next we will show k(E = 0 from ((D = 0 = ((E
((E = (x^ (/(x + y^ (/(y + z^ (/(z )(( x^ Eox + y^ Eoy + z^ Eoz )exp ( i(kxx + kyy + kzz -(t))

This turns out to be

((E = -i( Eox kx + Eoy ky + Eoz kz) exp ( i(kxx + kyy + kzz -(t)) = -i k(E = 0 .

So we use the divergence equations to show that k(E is zero and that k(B is zero. This says the plane eleectromagnetic wave is 'transverse', with the both E and B perpendicular to the direction of propagation.

Finally we need the exact orientation between E and B, and get it from Faraday's law


(xE = -(B/(t


(xE = (x^ (/(x + y^ (/(y + z^ (/(z ) x ( x^ Eox + y^ Eoy + z^ Eoz )exp ( i(kxx + kyy + kzz -(t))


(xE = i (x^ kx + y^ ky + z^ kz ) x ( x^ Eox + y^ Eoy + z^ Eoz )exp ( i(kxx + kyy + kzz -(t))


(xE = i k x E = i k x ( x^ Eox + y^ Eoy + z^ Eoz )exp ( i(kxx + kyy + kzz -(t))

and 
-(B/(t = -(/(t ( Bo (exp ( i(kxx + kyy + kzz -(t)) = +i( B .

This means


(xE = -(B/(t   => =>  i k x E = i ( B 

Now we see the direction of B is given by k x E.  Thus, k, E and B are mutually perpendicular.

The magnitude of B is  given by


B = E(k/() = E/v  (E/c in free space)

The SI magnetic field is much smaller than the SI electric field !

=======================================================================

S = E x H, and we usually want the time average of S, namely <S>.

E = Eo exp(i(k(r-(t)),

and 

H = Ho exp(i(k(r-(t + ())

The understanding with complex notation is that that at the end, we will take the real part

Re(E) = Eo cos (k(r - (t)  [Eo understood to be real]   and likewise for H.

There is in general a phase difference between E and H. 

In the equations above the phase difference is (.

To shorten the notation we will take (1  =  k(r  and (2 = k(r + (.

Then

S = Re(E) x Re(H) = Eo x Ho ( cos ((1-(t) cos((2-(t) )

The time average is

<S> = Eo x Ho (1/T) 0( T dt [( cos ((1-(t) cos((2-(t) )]

<S> = Eo x Ho (1/T) 0( T dt [( cos (1 cos (t + sin (1 sin (t) (cos (2 cos (t + sin (2 sin (t) )]

The time average of sin (t cos (t vanishes, and the time averge is 1/2 of both cos2(t and sin2(t, so

<S> = 1/2 Eo x Ho ( cos (1 cos (2 + sin (1 sin (2 )  = 1/2 Eo x Ho cos((2-(1) , or

<S> = 1/2 Eo x Ho cos(()

We have been aiming to show that the time-averaged poynting vector can just as well be written as



<S> = 1/2 Re (E x H*),

where H* is the complex conjugate of H. In this form both E and H are written in complex notation:


<S> = 1/2 Re (Eo exp(i(k(r-(t)) x Ho exp(-i(k(r-(t + ()) .

This reduces to the previous equation, which we worked out in gory detail.


<S> = 1/2 Eo x Ho cos(().

At plane boundaries, we will be using E|| and H||  continuous, and we will need a relation between Eo and Ho.  From the result for E and B we have



Eo = vBo ,  and because B = (H,     Eo = v ( Ho .        In free space, Eo = c (o Ho .

Normal incidence. (text, p. 384, ff.)


We'll start with a diagram like Fig. 9.13, in a side view.

    Ei
Crosses are for fields going into the page, and dots 




Incident fields @ z=0

for vectors coming out of the page.  (I'm going to fudge

 Bi (
     vi     ( Ei^ x Bi^ = ki^)

a little and use a capital theta ( for an arrow pointing

out of the page, and the symbol ( for one into the page.)
x








         y (            z      The RH coordinate system


The sketch just above shows incident fields at z=0 for 

   Er 

plane waves travelling in the +z direction. For reflected



reflected fields @ z=0

waves, we follow Griffiths and draw the sketch at the right               vr     ( Br        (Er^ x Br^ = kr^)

The transmitted waves are oriented like the incident ones,

Et pointing up, and Bt coming out of the page, vt  pointing 

to the right.

The k-vector points in the +z direction, so a the full incident plane wave looks like


Ei(r, t) = Eio exp(i(ki(r - (t))  = x^ Eio exp(i(kiz - (t)) .     { Eio is a constant. }

We know that E|| and H|| must be continuous across a boundary with no surface sheet currents K. 

I'll write that out for E||
E|| continuous at z=0
Ei + Er = Et 



Eio exp(i(ki0 - (t)) + Ero exp(i(kt0 - (t)) = Eto exp(i(kt0 - (t))

This must be true for all x and y on the boundary and for all times t. Notice that if the waves had different frequencies, this boundary equation would be impossible to satisfy for all times t. So the frequencies of reflected and transmitted waves must be the same as that of the incident wave. 



To satisfy the boundary conditions (BC) on either E or H, 



 ((reflected = (transmitted = (incident ) .

Now that z=0 and the frequencies are all the same it is easy to write down the BC;


E|| continuous:

Eio + Ero = Eto

H|| continuous:
 
Hio - Hro = Hto .

From the top of p. 5, we have relations between the amplitudes of E and H. These are all magnitude relations, they don't contain any signs


  Eio = vi (i Hio,
Ero = vr (r Hro

Eto = vt (t Hto  .


We are claiming non-magnetic materials, so  (o = (i = (r = (t .    Now we find for E|| and H||

E|| continuous at z = 0

Eio + Ero = Eto  , and  for


H|| continuous at z = 0

Hio - Hro = Hto  = Eio/vi - Ero/vr = Eto/vt  .

Now is the time to draw another little sketch, to 

remind us that the incident and reflected waves

medium 1

medium 2

travel in medium 1, where the wave speed is v1,

and the transmitted wave travels in medium 2, 

vi = vr = v1

vt = v2
where the wave speed is v2.









n1 = c/v1

n2 = c/v2 .

With this information in place we manipulate the H|| equation around and then write the equations corresponding to 9.78  and 9.79



Eio + Ero = Eto

Eio - Ero = ( Eto , where    ( = n2/n1 .


We solve this for Eto by adding the equations and find  Eto = 2 Eio / (1+()     [Eq 9.85] 

The transmission coefficient is the ratio of time-averaged transmitted intensity to the time-averaged incident intensity in the z-direction





T = <It>/<Ii> = transmission coefficient


T = It/Ii = [ <Et x Ht>(z^ ]/ [ <Ei x Hi>(z^ ]

Recall from p. 4 that    <E x H> = 1/2 Re (ExH* ) .


Et x Ht* = Eto exp(i k(r - i(t) x Hto* exp(-ik(r + i(t) = Eto x Hto* .

Thus, with Eto = vt (t Hto, we find 


<It> = <Et x Ht*>(z^ =1/2 Eto Eto* /((tvt) ,  or


<It >= |Eto|2 /(2(t vt) . 

This is the general form for intensity in a plane electromagnetic wave.    <I> = |Eo|2 /(2(v) .

Then the overall transmission coefficient is


T = <It>/<Ii> = (vi/vt) ((i/(t) |Eto/Eio|2 .

With nonmagnetic materials, we wind up with


T = (n2/n1) |Eto/Eio|2   = (n2/n1) 4 /(1+ n2/n1)2  = 4n1n2 /(n1+n2)2 .




T = 4n1n2 /(n1+n2)2 
Normal incidence.

[ Eq. 9.87 ]

This famous result, probably first obtained by Fresnel in late 1810's, gives T = 0.96 

when n2 = 1.5 and n1 = 1.

The reflection coefficient R is given by


R=  <Ir>/Ii> ,  where


<Ir> = <Er x Hr>(( -z^ )  

Note that energy in the reflected beam flows to the left (-z direction) and that's why the Poynting vector is dotted into -z^.   You should readily be able to show that 


R = |Ero/Eio|2 .

For homework you should solve fill in the steps to get to R (quick work) and then solve for Ero/Eio 

(more quick work) to obtain Griffiths' 9.86 on p. 386.

What would happen if we drew the reflected 


    vr             ( Br
waves differently? Instead of what we did before, 




      reflected fields

what about the following?





                    Er      at z=0

Notice that Er is flipped over, but E x H still points to the left,

in the direction of energy flow of the reflected beam.

Homework:  Use this configuration, write out the continuity of parallel components of E and H, and calculate the reflection and tramsmission coefficients. Show all the algebra. T and R should come out just the same as before. {But a positive Ero here means the reflected E field is flipped over, whereas in the first version, a positive Ero means the reflected E field was not flipped over with respect to the incoming E field.

What about light travelling slower in glass than in air?  I've put a document on the web which goes through this effect. The short version is that incoming light 'rattles' the molecules of glass ( the incoming E field accelerates electrons, which re-radiate ), and the propagating wave in glass is a combination of the incident beam and the re-radiated beam. Due to a 90o phase difference between incident and re-radiated beams, the phase velocity of the combined beam is less than in vacuum.

