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Magnetic field, Biot-Savart, etc.  PH 316 MJM

10/16/05

The Biot-Savart (BS) law says B is created from currents according to


dBp = [(o/(4()] I dl x r/r3,

where r goes from dl to point p, where B is to be calculated.

In class we found the magnetic field at the center of a current loop to be Bcenter  = (oI/(2R).

We will show (see Griffiths p. 218) that on the axis of a current loop 


Bz =1/2 (o IR2/(R2+z2)3/2.

Note that this reduces to Bcenter when z-> 0.

What about z increasing till z>>R ?  Then we are very far from the loop, on the axis. The result is


B z,far = ((o /2() I ((R2)/z3 = ((o /4() 2 I ((R2)/z3 = 2 km I ((R2)/z3 ,

where km = (o/(4().  Ampere claimed that little current loops acted like magnets; his model of atomic magnetism was a bunch of magnetic dipoles, each a little current loop, each having a magnetic moment


m = I a.
[ magnetic moment m of a tiny currrent loop of area a ]

The area vector a is ( to the area of the loop, in accordance with the right-hand rule. 

In Ampere's terms the B field on the axis of a current loop is



B z,far = z^ 2 km I a/z3  = 2 km m/z3 .


This should correspond to the electric field of an electric dipole p, with km substituted for ke = 1/(4((o)

and m for p.


E electric dipole  = ke/r5 [ 3 (p(r) r - p r2 ]    { 3.104, p. 155 }

When p is parallel to r, (r points along the axis of the dipole) this reduces to 



E electric dipole  = 2 ke p/r3 .

It appears likely that the magnetic field of a dipole m is given (by direct analogy with p) by


Bdipole  = km/r5 [ 3 (m(r) r - m r2 ]

Note that the interchange between km and ke involves replacing 1/(o by (o .

Now to show two results, or at least their main points in Griffiths:


div B = 0
follows from the BS law


curl B = (o J, where J is the current density (current per unit area)


Ampere's law  ( B(dl = (o I enclosed   (from curl B = (o J, Ampere's law at a point )

First we generalize BS to 2-D and 3-D currents


dB = km I dl x r/r3   
(
B = km ( J(r') x (r-r')/| r-r'|3 d(
Then using product rule (6) from the inside cover, 


div B = ((B = km [ ( (r-r')/| r-r'|3 (((xJ) d( +( J(r') x (([(r-r')/| r-r'|3] d(
( does not act on J [ p. 223] ((xJ) = 0 so 


((B = - km ( J(r') ( ( x (r-r')/| r-r'|3 d(
This vanishes because curl (r-r')/| r-r'|3 = 0.  

[To check this, take the x-component of the curl and verify that it is identically zero.]

So we have showed that div B = 0 follows from the generalized B-S law.


( x B  = km (x ( J(r') x(( (r-r')/| r-r'|3 d(
From product rule (8) from the inside cover, keeping in mind ( doesn't act on J


( x B  = km ( J(r') [( ( (r-r')/| r-r'|3] d( -( (J(r') (() (r-r')/| r-r'|3 d(
Griffiths disposes of the 2nd term by a series of manipulations, including ('(J = 0 for steady currents.

The first term will reduce to



( x B = 4(km J  


because (as Griffiths argued on p. 50, and we shall argue from poisson's equation in a moment) 

(( (r-r')/| r-r'|3 = -div grad 1/|r-r'| = -(2 (1/|r-r'|) = 4(((r-r') .

We know that the electric potential V satisfies poisson's equation  (2 V = -(/(o   = - 4(ke ( , and that, the integral for V starts out as a sum over kqi/ri and comes out as


V(r) = ke ( d(' ((r')/|r-r'| .

So we write compute (2V and delta-function property gives us poisson's equation.


(2 V(r) = ke ( d( ((r') (2 (1/|r-r'|) = ke ( d( ((r') (-4(((r-r')) = -4(ke ((r)

From ( x B = 4(km J  and stokes theorem ( ( curl F ( da = (c F(dl ) you should be able to obtain


(c B(dl = (o Ienclosed 
( AMPERE'S LAW) .

Vector potential A.

Since div B = 0  and in general div (curl F) = 0, we can imagine B to be generated by a vector potential


B = ( x A

The vector potential A will of course depend on the currents J which create B. A also has the freedom to have the gradient of any scalar added to it because it won't change B:


B = ( x [(A(J) + (f  ] = ( x A(J) + curl grad  f,

and curl grad f is identically zero for any scalar function. According to Griffiths we can use this freedom to make ((A be zero, something we will use right now.


(o J  = (x B = ( x (( x A) = (((( A) - (2 A .

So we know that (2(1/|r-r'|) = -4(((r-r'),  and that (2A(r) = (o J(r) . This leads us to say


A = (o/(4() ( J(r')/|r-r'| d( ,

because when (2 acts on A, it goes inside the integral, doesn't bother with J(r') and produces a (-function when acting on 1/|r-r'|, giving us back


(2 A = -(o J .

Now we can write down some electrical and magnetic correspondences


dV = ke dq/r

(  
V = ke ((d(/|r-r'|


ke = 1/(4((o)


km = (o/(4()



dB = km I dl x r/r3
(
A = km ( J d(/|r-r'|


E  = - (V


B = ( x A


((E = (/(o


( x B = (o J

(2 V = -(/(o


(2 A = -(o J


Edipoles = ke /r5 [ 3r(r(p) - pr2 ]

Bdipoles = km /r5 [ 3r(r(m) - mr2 ]


p = qd





m = Ia


Vdipole = ke p(r/r3



Adipole = km m x r/r3 (coming right up)

If B is due only to magnetic dipoles, and not to free currents J, then we can mimic the potentials for E from electric dipoles


V el dipoles = (surface P(r')(n^ da/|r-r'|  + (d( (-('( P(r') )/|r-r'| ;



P = polarization = electric dipole moment/volume


V mag dipoles = (surface M(r')(n^ da/|r-r'|  + (d( (-('( M(r') )/|r-r'| ;



M = magnetization = magnetic dipole moment/volume


E el dipoles = - ( V el dipoles

B mag dipoles   = -( V mag dipoles  (no free currents)

We are going to need the vector potential due to a magnetic dipole, so that's what will come next. Griffiths says it's              Adipole = km m x r/r3 .    [ eq. 5.83, p. 244 ]


We will do a calculation to 


      z


r

check on this. 

The field point will lie in the x-z plane                      (
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r = r( sin (, 0, cos ()

The loop lies in the x-y plane:
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dl = Rd( ( -x^ sin ( + y^ cos ()
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A = km (J d(/|r-r'| = km I (dl/|r-r'|






x 

|r-r'| = ( (r sin ( -R cos ()2 + (R sin ()2 + (r cos ()2 )1/2
|r-r'| = ( r2 -2 rR sin (cos ( + R2 )1/2  = r (1 - 2R/r sin ( cos ( + (R/r)2  )1/2 

We binomially expand  the denominator and get


A = km I 0 (2( d( [Rd( ( -x^ sin ( + y^ cos ()](1/r)[ 1 + R/r sin ( cos ( -1/2 (R/r)2 ]

Only one term survives the integration and we get


A  = km I ((R2) y^ sin (/r2.

Does this equal A = km m x r/r3 ?  Well, m = I ((R2) z^, and r = (x^ r sin ( + z^ r cos (). 

Check it out; try the cross product and you'll find that it fits.

Then from A = km m x r/r3 the idea is to write a general form for the vector potential as he does on p. 263. eq 6.11 for A due to a collection of dipoles, just as we did originally for the polarization, but now it is the magnetization at work (magnetic dipole moment per unit volume)


A = km (d( M x(r-r')/|r-r'|3 .

When Griffiths is through working his magic, he arrives at [ 6.13, 6.14, 6.15, p. 264 ]


A = km { (d(' Jb(r')/|r-r'| + ( Kb(r') da'/|r-r'|  ,


where the 


bound current density is   Jb = ( x M,

and the surface 
bound sheet current density is      Kb  = M x n^ .

We will take a class period to determine the magnetic moment m of some small magnets, and from this obtain the magnetization M. Then it will be possible to calculate the B field at the surface of a magnet or to calculate the force between two magnets. Let's say the magnetization is 500,000 A/m, and the magnet is 4 mm thick. The effective sheet current around the outside of the magnet is Kb = 5E5 A/m, pointing circumferentially. The total bound current would be 4 mm x 5E5 A/m = 2000 A, in the form of a sheet wrapping around the curved part of the magnet. This makes the magnet similar to a short solenoid.

Experiment.


Place the magnet with its axis facing toward




        BEarth
a magnetic compass, but far away (2-3 m)

The compass will feel only the Earth's magnetic

field. The magnet should approach along a line



        (
perpendicular to the Earth's field, and as it

does so, the compass will deflect.













      Bmagnet

By deflecting the compass in increments of 10o, and noting the distance

to the magnet, one will be able to find the m if BEarth is known, since 

Baxis = 2 km m/z3 , and tan ( = Bmagnet / BEarth.

Roughly half of you will measure moments this way, and the other half will find BEarth
by also using a compass and a large wire coil, whose axis is perpendicular to that of the Earth's field. 

The idea is similar - put differing amounts of current in the coil, and see how much the compass deflects. This time the B field is known from the coil, and one can determine BEarth at that spot.

