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Suppose we have two equal masses m 

         k


k

k

placed in between three equal springs k, 

as shown in the sketch. 

Then we have [x1 is the displacement of on

from equilibrium, and x2 is the displacement 

of the other]


L = T - U


T = m/2 (x1dot2 + x2dot2);


U = k/2 x12 + k/2 x22 + k/2(x2-x1)2

d/dt((L/(qi) - (L/(qi = 0 [Lagrange's equations],   or sum of forces  = ma


m x1ddot + kx1 + k(x1-x2) = 0


m x2ddot + kx2 + k(x2-x1) = 0

Both x1 and x2 occur at the same frequency. We could choose

 x1 = A1 exp(i(t),  and x2 = A2 exp(i(t), with A1 and A2 each being complex. 

Or we could take 

x1 = c1 cos((t + (1), and x2 = c2 cos((t + (2), with  c1, c2, (1,  and (2 all being real. 

Then, whichever form we choose,  x1ddot = -(2 x1, and x2ddot = - (22 x2 . This gives


(-m(2 + 2k) x1                  - k x2 = 0

and

-k x1                 +(-m(2 + 2k) x2 = 0

Each of these equations will give a ratio x1/x2, and these ratios must be the same.


x1/x2 = k/(-m(2 + 2k) = (-m(2 + 2k)/k

This equation for ( can also be obtained as in the text by claiming the determinant of matrix M in the equation



( X = 0

must vanish in order to have nontrivial solutions for x1 and x2. There are two solutions for (, and for each of the two ( values we get an amplitude ratio x1/x2.

For (a = k/m, we find x1/x2 = +1, and when (b = 2k/m, x1/x2 = -1. 

So for (1, x1 = x2 which we may think of as one normal mode of this system, where masses 1 and 2 each have the same displacement A. In order to formally write down Eq (1) below for the 'normal mode' (, one way to proceed is by the odd expedient of claiming that mode two must be zero. Namely, in mode 2 x1 = -x2, so x1 + x2 = 0. Thus if we write (1 = x1 + x2, we are claiming in a backhand way that mode two is zero.  { If this cavalier treatment of writing modes gives you heartburn, see the section at the end of this paper on eigenvalues and eigenvectors of matrices.}

(1)
(1 = x1+x2    = C cos((1t +c )       { oscillates with frequency (1 ; zero when only mode 2 active}

In mode 1, x1 and x2 move together in phase at frequency (1. 

Then for mode 2 we have

(2)
(2 = x1 - x2  = D cos((2t + d)
{ oscillates with frequency (2 ; it's zero when only mode 1 active}

In mode 2, x1 and x2 move opposite to each other (x1/x2 = -1) at the same frequency (2.

From Eqs. (1) and (2), we have 

(3)
x1 = 1/2 ((1 + (2)  = 1/2 [ C cos((1t +c) + D cos((2t + d) ].

Likewise, we find   

(4)
x2 = 1/2 ((1 - (2) = 1/2 [ C cos((1t + c) - D cos((2t + d) ] .

Now we will work out what happens with the following initial conditions:take x1(0) = x10 and x2(0) = 0, and x1dot(0) = x2dot(0) = 0.  From the initial positions we find, using (3) and (4)

(5)
x10 = ½ [ C cos(c) + D cos(d)],        and   
0 = ½ [ C cos(c) - D cos(d) ] .

From the initial velocities we have

(6)
0 = -1/2 [ (1 C sin(c) + (2 D sin(d)]  and   
0 = -1/2[(1 C sin(c) - (2 Dsin(d)]  .

From (6) we must have c = d = 0, and then from (5) C must equal D. The equations (3) and (4) become

(7)
x1 = C/2 [ cos((1t)+ cos((2t ) ],     and x2 = C/2 [ cos((1t) - cos((2t) ].

Now we call on cos (a(b) = cos(a) cos(b) - ( sin(a) sin (b) to rewrite (7) as

(8)
x1 = C cos(1/2((1 + (2)t) cos( ½(cos((1 - (2)t)  and

(9)
x2 = C sin(1/2((1 + (2)t) sin( ½((1 - (2)t)  .

This motion has two frequencies:  the average of the two normal mode frequencies ( ((1+(2)/2 ), and half the difference of the two mode frequencies  (  ((1 - (2)/2 ). 

From its initial displacement, x1 moves back and forth, while x2 initially does very little. But as time goes on, x1 moves more and more slowly, while the motion of x2 picks up. After a period of time, x2 has all the motion. The time T needed for the energy to 'change hands' is roughly ½ ((1 - (2)T = (/2, the time for half the frequency to undergo a phase change of 90o.  The closer together the two frequencies are to one another, the longer this energy transfer will take.

The math here is nearly identical to the treatment of 'beats' where two signals of nearby frequencies f1 and f2 are added. The combined signal is the product of a 'fast' frequency ( the average of f1 and f2) and a 'slow' frequency ( half the difference of f1 and f2) . The 'beat' frequency is exactly the difference of f1 and f2 because there are two 'beats' per cycle of the slow frequency.

You will get to make a simple model of coupled oscillators using string, and see for yourself the energy transfer between modes.

======================================================================

Outline of the matrix treatment of coupled oscillations.

The equations toward the bottom of p. 1 read


(-m(2 + 2k) x1                  - k x2 = 0

and

-k x1                 +(-m(2 + 2k) x2 = 0  .

We'll divide by mass, and call (2 = (,  then we have


(-(+ 2k/m) x1                  - k/m x2 = 0



-k/m x1                 +(-(+ 2k/m) x2 = 0  .

Moving the ( terms to the other side we have
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This is a matrix equation   M x = ( x,  where we wish to determine the eigenvalues ( of the matrix M, and also the eigenvectors, x . 

One finds the eigenvalues by demanding the secular determinant vanish
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This results in (1 = k/m, and (2 = 2k/m.  Then we put (1 into the eigenvalue equation (10) and find
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This results in x1 =x2, we would then write an eigenvector as a column vector, understanding the top component to be due to x1, and the bottom to x2
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where ( is some suitable constant.  Then if ( equals 1, it would be natural to write


( = x1 + x2 .

Often, such vectors are 'normalized' to have unit magnitude. In that case we would have


( = 1/(2 { x1 + x2 }  .

