Do...Loop Statement Example

This example shows how Do...Loop statements can be used. The inner Do...Loop statement loops 10 times, sets the value of the flag to False, and exits prematurely using the Exit Do statement. The outer loop exits immediately upon checking the value of the flag.

Dim Check, Counter

Check = True: Counter = 0 ' Initialize variables.

Do ' Outer loop.

 Do While Counter < 20 ' Inner loop.

 Counter = Counter + 1 ' Increment Counter.

 If Counter = 10 Then ' If condition is True.

 Check = False ' Set value of flag to False.

 Exit Do ' Exit inner loop.

 End If

 Loop

Loop Until Check = False ' Exit outer loop immediately

If...Then...Else Statement

Conditionally executes a group of statements <JavaScript:hhobj_4.Click()>, depending on the value of an expression <JavaScript:hhobj_5.Click()>.

Syntax

If condition Then [statements] [Else elsestatements]

Or, you can use the block form syntax:

If condition Then�[statements]

[ElseIf condition-n Then�[elseifstatements] ...

[Else�[elsestatements]]

End If

The If...Then...Else statement syntax has these parts:

PartDescriptionconditionRequired. One or more of the following two types of expressions:A numeric expression <JavaScript:hhobj_6.Click()> or string expression <JavaScript:hhobj_7.Click()> that evaluates to True or False. If condition is Null <JavaScript:hhobj_8.Click()>, condition is treated as False.An expression of the form TypeOf objectname Is objecttype. The objectname is any object reference and objecttype is any valid object type. The expression is True if objectname is of the object type <JavaScript:hhobj_9.Click()> specified by objecttype; otherwise it is False.statementsOptional in block form; required in single-line form that has no Else clause. One or more statements separated by colons; executed if condition is True.condition-nOptional. Same as condition.elseifstatementsOptional. One or more statements executed if associated condition-n is True.elsestatementsOptional. One or more statements executed if no previous condition or condition-n expression is True.Remarks

You can use the single-line form (first syntax) for short, simple tests. However, the block form (second syntax) provides more structure and flexibility than the single-line form and is usually easier to read, maintain, and debug.

Note With the single-line form, it is possible to have multiple statements executed as the result of an If...Then decision. All statements must be on the same line and separated by colons, as in the following statement:

If A > 10 Then A = A + 1 : B = B + A : C = C + B

A block form If statement must be the first statement on a line. The Else, ElseIf, and End If parts of the statement can have only a line number <JavaScript:hhobj_10.Click()> or line label <JavaScript:hhobj_11.Click()> preceding them. The block If must end with an End If statement.

To determine whether or not a statement is a block If, examine what follows the Then keyword <JavaScript:hhobj_12.Click()>. If anything other than a comment <JavaScript:hhobj_13.Click()> appears after Then on the same line, the statement is treated as a single-line If statement.

The Else and ElseIf clauses are both optional. You can have as many ElseIf clauses as you want in a block If, but none can appear after an Else clause. Block If statements can be nested; that is, contained within one another.

When executing a block If (second syntax), condition is tested. If condition is True, the statements following Then are executed. If condition is False, each ElseIf condition (if any) is evaluated in turn. When a True condition is found, the statements immediately following the associated Then are executed. If none of the ElseIf conditions are True (or if there are no ElseIf clauses), the statements following Else are executed. After executing the statements following Then or Else, execution continues with the statement following End If.

Tip Select Case may be more useful when evaluating a single expression that has several possible actions. However, the TypeOf objectname Is objecttype clause can't be used with the Select Case statement.

Note TypeOf cannot be used with hard data types such as Long, Integer, and so forth other than Object.

If...Then...Else Statement Example

This example shows both the block and single-line forms of the If...Then...Else statement. It also illustrates the use of If TypeOf...Then...Else.

Dim Number, Digits, MyString

Number = 53 ' Initialize variable.

If Number < 10 Then

 Digits = 1

ElseIf Number < 100 Then

' Condition evaluates to True so the next statement is executed.

 Digits = 2

Else

 Digits = 3

End If

' Assign a value using the single-line form of syntax.

If Digits = 1 Then MyString = "One" Else MyString = "More than one"

Use If TypeOf construct to determine whether the Control passed into a procedure is a text box.

Sub ControlProcessor(MyControl As Control)

 If TypeOf MyControl Is CommandButton Then

 Debug.Print "You passed in a " & TypeName(MyControl)

 ElseIf TypeOf MyControl Is CheckBox Then

 Debug.Print "You passed in a " & TypeName(MyControl)

 ElseIf TypeOf MyControl Is TextBox Then

 Debug.Print "You passed in a " & TypeName(MyControl)

 End If

End Sub

For...Next Statement Example

This example uses the For...Next statement to create a string that contains 10 instances of the numbers 0 through 9, each string separated from the other by a single space. The outer loop uses a loop counter variable that is decremented each time through the loop.

Dim Words, Chars, MyString

For Words = 10 To 1 Step -1 ' Set up 10 repetitions.

 For Chars = 0 To 9 ' Set up 10 repetitions.

 MyString = MyString & Chars ' Append number to string.

 Next Chars ' Increment counter

 MyString = MyString & " " ' Append a space.

Next Words

Making Faster For...Next Loops

Integers use less memory than the Variant data type <JavaScript:hhobj_3.Click()> and are slightly faster to update. However, this difference is only noticeable if you perform many thousands of operations. For example:

Dim CountFaster As Integer ' First case, use Integer.

For CountFaster = 0 to 32766

Next CountFaster

Dim CountSlower As Variant ' Second case, use Variant.

For CountSlower = 0 to 32766

Next CountSlower

The first case above takes slightly less time to run than the second case. However, if CountFaster exceeds 32,767, an error occurs. To fix this, you can change CountFaster to the Long data type <JavaScript:hhobj_4.Click()>, which accepts a wider range of integers. In general, the smaller the data type <JavaScript:hhobj_5.Click()>, the less time it takes to update. Variants are slightly slower than their equivalent data type.

Returning Strings from Functions

Some functions have two versions: one that returns a Variant data type <JavaScript:hhobj_3.Click()> and one that returns a String data type <JavaScript:hhobj_4.Click()>. The Variant versions are more convenient because variants handle conversions between different types of data automatically. They also allow Null <JavaScript:hhobj_5.Click()> to be propagated through an expression <JavaScript:hhobj_6.Click()>. The String versions are more efficient because they use less memory.

Consider using the String version when:

Your program is very large and uses many variables <JavaScript:hhobj_7.Click()>.�

You write data directly to random-access files.

The following functions return values in a String variable when you append a dollar sign ($) to the function name. These functions have the same usage and syntax as their Variant equivalents without the dollar sign.

Chr$ <JavaScript:hhobj_8.Click()>ChrB$ <JavaScript:hhobj_9.Click()>*Command$ <JavaScript:hhobj_10.Click()>CurDir$ <JavaScript:hhobj_11.Click()>Date$ <JavaScript:hhobj_12.Click()>Dir$ <JavaScript:hhobj_13.Click()>Error$ <JavaScript:hhobj_14.Click()>Format$ <JavaScript:hhobj_15.Click()>Hex$ <JavaScript:hhobj_16.Click()>Input$ <JavaScript:hhobj_17.Click()>InputB$ <JavaScript:hhobj_18.Click()>LCase$ <JavaScript:hhobj_19.Click()>Left$ <JavaScript:hhobj_20.Click()>LeftB$ <JavaScript:hhobj_21.Click()>LTrim$ <JavaScript:hhobj_22.Click()>Mid$ <JavaScript:hhobj_23.Click()>MidB$ <JavaScript:hhobj_24.Click()>Oct$ <JavaScript:hhobj_25.Click()>Right$ <JavaScript:hhobj_26.Click()>RightB$ <JavaScript:hhobj_27.Click()>RTrim$ <JavaScript:hhobj_28.Click()>Space$ <JavaScript:hhobj_29.Click()>Str$ <JavaScript:hhobj_30.Click()>String$ <JavaScript:hhobj_31.Click()>Time$ <JavaScript:hhobj_32.Click()>Trim$ <JavaScript:hhobj_33.Click()>UCase$ <JavaScript:hhobj_34.Click()>* May not be available in all applications.

