ES 202 Fluid and Thermal Systems Exam 2 Review Session (2/8/03)

- Fundamental laws of thermodynamics
 - \circ Zeroth law
 - First law
 - o Second law
- Energy balance
 - o mass transfer
 - o heat transfer
 - work transfer
 - \circ no generation
- Entropy balance
 - o heat transfer
 - o mass transfer
 - entropy generation
- Phases of a fluid
 - o compressed (subcooled) liquid
 - o two-phase (liquid-vapor) mixture
 - superheated vapor
- State Principle of a simple substance
- *P-v-T* surface of a general substance and its two-dimensional projections
 - \circ *P*-*v* diagram
 - \circ *T-v* diagram
 - \circ *P-T* diagram
- Features of two-dimensional phase diagrams
 - o relative position of compressed liquid, two-phase and superheated vapor regions
 - slopes of constant property lines
 - o direction of property variation
- Properties in two-phase region
 - o dependency between temperature and pressure in two-phase region
 - concept and definition of quality (absolutely crucial)
 - mass fraction of vapor in a liquid-vapor mixture

$$x = \frac{m_g}{m_f + m_g}$$

• intensive (specific) properties can be expressed as a <u>mass-weighted average</u> of its saturated liquid and saturated vapor values

$$f = (1 - x)f_f + xf_g$$

where f can be specific volume, specific enthalpy, specific internal energy or specific entropy

- Phase and state determination of a substance:
 - o always look up the two-phase saturation table first (it serves as a reference)
 - o then look up corresponding tables

- o finally interpolate between "sandwiched" interval
 - linear
 - bi-linear
- Compressed liquid approximation:
 - key point: dependency on pressure is weak for most properties
 - approximate most properties by their <u>saturated liquid</u> values evaluated at the <u>specified</u> <u>temperature</u>

$$u(T, P) = u_f(T)$$

$$v(T, P) = v_f(T)$$

$$s(T, P) = s_f(T)$$

$$h(T, P) = h_f(T) + (P - P_{sat}(T))v_f(T)$$

- Constant property processes
 - o they serve as models or idealizations of complex processes
 - constant pressure process (piston-cylinder model)
 - constant volume process (rigid tank model)
 - o constant temperature process (slow compression/expansion with significant heat transfer)
 - constant entropy process (reversible, adiabatic)
 - their process paths on phase diagrams are simple (they help tremendously in problem solving!)
- Models versus general substances
 - o models: ideal gas, incompressible substance
 - o ideal gas model good for gases at low pressures and high temperatures
 - o incompressible substance model good for liquids and solids
 - o property tables bridge the gaps between models and represent the real behavior
 - basic principles stay the same (energy balance and entropy balance) regardless you use models or general substances
- Gibbs equation holds for any general substance (fundamental in finding entropy change)

$$Tds = du + Pdv$$
$$Tds = dh - vdP$$

- Ideal gas model
 - o definition of reduced pressure and reduced temperature
 - o compressibility chart

$$Z = \frac{Pv}{RT}$$

- justification of ideal gas model (*Z* within 10% of unity)
- extend the applicability of ideal gas equation with known Z values
- property changes
 - definition of c_p and c_v
 - specific internal energy and specific enthalpy only depend on temperature

$$\Delta u = \int du = \int c_{v} dT$$
$$\Delta h = \int dh = \int c_{p} dT$$

specific entropy depends on temperature AND pressure (or specific volume)

$$\Delta s = \int ds = \underbrace{\int \frac{c_p}{T} dT}_{s_2^0 - s_1^0} - R \ln\left(\frac{P_2}{P_1}\right)$$

- solution method for constant specific heats 0
 - simplification of integral evaluation for <u>constant</u> specific heats

$$\Delta u = c_v \Delta T$$

$$\Delta h = c_p \Delta T$$

$$\Delta s = c_p \ln\left(\frac{T_2}{T_1}\right) - R \ln\left(\frac{P_2}{P_1}\right) \quad \text{or} \quad \Delta s = c_v \ln\left(\frac{T_2}{T_1}\right) + R \ln\left(\frac{v_2}{v_1}\right)$$

- solution methods for variable specific heats 0
 - needs a way to evaluate (exact) or approximate the above integrals
 - <u>exact method</u>: tabulated values for u, h, s^0 (functions of temperature only) at various temperatures for variable specific heats
 - . approximate method: "average" specific heats

$$\Delta u = c_{v,avg} \Delta T$$

$$\Delta h = c_{p,avg} \Delta T$$

$$\Delta s = c_{p,avg} \ln\left(\frac{T_2}{T_1}\right) - R \ln\left(\frac{P_2}{P_1}\right) \quad \text{or} \quad \Delta s = c_{v,avg} \ln\left(\frac{T_2}{T_1}\right) + R \ln\left(\frac{v_2}{v_1}\right)$$

where the "average" specific heats are evaluated at the average temperature

- Isentropic processes •
 - general substance 0
 - entropy remains constant from one state to another one •
 - only needs one more thermodynamic property to fix the state (State Principle)
 - table look-up $(s_2 = s_1)$
 - ideal gas 0
 - Gibbs equation is greatly simplified and leads to analytical solution
 - pressure, temperature and specific volume varies in a specific manner .
 - constant specific heats:

$$Pv^{k} = \text{constant}$$

 $Tv^{k-1} = \text{constant}$
 $(1-k)/k$

$$TP^{(1-k)/k} = \text{constant}$$

variable specific heats:

$$\underbrace{s_2^0(T_2) - s_1^0(T_1)}_{\text{temperature dependency}} = \underbrace{R \ln\left(\frac{P_2}{P_1}\right)}_{\text{pressure dependency}}$$

p

- Significance of isentropic process:
 - set the limit of (best) performance of certain types of steady-state devices (compressor, turbine, nozzle, diffuser)
 - o definition of isentropic efficiency for compressor/pump and turbine
 - representation of process paths on a *T*-s diagram
 - slope of constant pressure line and its direction of variation
- Energy and entropy analysis for ideal and non-ideal compressor and turbine
 - o representation of process path of steady state, adiabatic process on *h-s* diagram
 - difference in specific enthalpy represents the amount of work per unit mass flow
 - difference in specific entropy represents the amount of entropy generation (irreversibility) per unit mass flow
 - difference in location of actual and ideal states
- Applications
 - power cycle (Rankine cycle as an example)
 - refrigeration cycle (reverse process direction)
 - analysis follows a "divide and conquer" approach
 - tackle each individual component
 - use thermodynamic conditions for a closed loop to link them together
 - effects of irreversibility on cycle performance (isentropic efficiency)