ES 202 Fluid and Thermal Systems Exam 1 Review Session (1/11/03)

- Conservation and accounting principles:
 - o mass (mass transfer; without generation)
 - momentum (mass transfer, force transfer; without generation)
 - classification of force:
 - body force
 - surface force
 - classification of surface force
 - normal force
 - shear force
 - energy (mass transfer, heat transfer, work transfer; without generation)
 - o entropy (mass transfer, heat transfer; with generation)
- Objectives, design and modeling assumptions of steady state devices:
 - o nozzle, diffuser
 - compressor, turbine
 - o valve
 - heat exchanger
- Concept of pressure:

0

- surface (normal) force
- the only surface force when a fluid is at rest
- same magnitude in all directions at a point
- Hydrostatic distribution of pressure:
 - o does not vary in horizontal direction
 - o increases linearly with depth (proportional to fluid density)

$$\frac{dP}{dy} = -\rho g$$

- Applications:
 - o manometer
 - Pitot-static tube (flow speed measurement device)
 - multiple layer of fluids
- Force and moment calculations:
 - by first principles (direction integration on arbitrary shape)
 - by formula (for common surface shapes)
- Force analysis:
 - o concept of centroid

$$F = P_c A$$

where P_c is the pressure at the geometric center (centroid) of submerged surface

- Moment analysis:
 - o concept of line of action of resultant force, center of pressure
 - o center of pressure always lies below the centroid

$$y_p = y_c + \frac{I_{xx,c}}{\underbrace{y_c A}_{\text{offset}}}$$

- Applications:
 - plane surfaces (vertical, horizontal and inclined)
 - curved surfaces
 - horizontal force component is the same regardless of shape as long as vertical projection of submerged surface is the same
 - vertical force component depends on the amount of fluid above/below the surface
- Origin of buoyancy force
- Quantification of buoyancy force (Archimedes' principle):
 - magnitude equals the weight of fluid displaced by submerged body
 - o direction is always upward through the centroid of displaced volume
- Classification of fluid energy
 - o mechanical energy
 - o thermal energy
- Fundamental difference between them
- Components of mechanical energy
 - o flow work (pressure energy)
 - o kinetic energy
 - potential energy
- Mechanical energy balance
 - o derived from general energy balance and extract out the mechanical energy term

$$\left(\frac{P}{\rho} + \frac{V^2}{2} + gz\right)_{\text{in}} + w_{\text{in}} = \left(\frac{P}{\rho} + \frac{V^2}{2} + gz\right)_{\text{out}} + w_{\text{out}} + \text{losses}$$

• Conservation of mechanical energy leads to Bernoulli's equation

$$P + \frac{\rho V^2}{2} + \rho gz = \text{constant}$$

- interpreted as interchange of mechanical energy among its various components while keeping their sum to be constant
- Assumptions of Bernoulli's equation
- Strategy in problem solving
 - o apply conservation of mass to relate unknown velocities
 - apply Bernoulli's equation to relate unknown pressures
- "Modified" Bernoulli's equation as a correction for viscous losses

$$\left(P + \frac{\rho V^2}{2} + \rho g z\right)_{up} = \left(P + \frac{\rho V^2}{2} + \rho g z\right)_{down} + \rho g h_L$$

- Concept of stagnation pressure
 - o as a measure of total loss in a system

- Concept of viscosity as fluid friction
- Distinction between laminar and turbulent flow
- Estimation of total loss in system
 - major loss (due to friction on single straight pipe surface)

$$\Delta P = f \frac{L}{D} \frac{\rho V^2}{2}$$

- introduction of friction factor as a non-dimensional group
- functional dependency of friction factor
- Moody diagram, Haaland formula, Colebrook formula
- types of design problem
 - specify mass flow rate, determine pressure drop
 - specify pressure drop, determine mass flow rate (more difficult)
 - o requires iterative solution
- minor loss (due to friction in flow direction changes)
 - exit
 - entrance
 - connection
 - turn

$$\Delta P = K_L \frac{\rho V^2}{2}$$

- introduction of loss coefficient, K_L, as a non-dimensional group
- tabulation of empirically determined values of K_L
- Strategy to estimation of total loss
 - o follow a "divide and conquer" approach
 - o identify sources of loss
 - o express individual major and/or minor loss
 - sum up <u>pressure difference</u> to get total loss (pressure differences are additive telescoping effect)
- Pipe system
 - o series configuration
 - same mass flow rate throughout
 - parallel configuration
 - same pressure drop across each pipe section
- Dimensional analysis
 - Buckingham Pi Theorem
 - o representation of functional relationship in non-dimensional space