ES 202 Fluid and Thermal Systems Final Exam Review Session (2/25/03)

- Concept of a boundary layer on a solid surface
 - o no-slip kinematic boundary condition
 - steep velocity gradient
 - dominance of viscous force within a boundary layer
 - momentum deficit manifests itself as skin friction drag (result from momentum analysis)
- Dimensional analysis/scaling of
 - Boundary layer thickness
 - growth of boundary layer thickness over a flat plate in both laminar and turbulent regimes
 - Skin friction
 - skin friction coefficient over a flat plate (local versus total)
 - Drag
 - drag coefficient for object of various geometry (combined drag)
- Significance of Reynolds number
 - ratio of inertial force to viscous force
- Phenomenon of laminar-turbulence transition in a boundary layer on a flat plate
 - Laminar boundary layer:
 - molecular diffusion as main mechanism for momentum transfer
 - gradual velocity gradient
 - mild viscous stress
 - found near the beginning portion of a boundary layer (leading edge), i.e. low local Reynolds numbers
 - Turbulent boundary layer
 - random, turbulent motion adds more efficient mechanism for momentum transfer
 - steep velocity gradient
 - high viscous stress
 - found in the developed region of a boundary layer, i.e. high local Reynolds numbers
- Categorization of drag components
 - Skin friction drag
 - Pressure (form) drag
 - phenomenon of flow separation as an artifact of fluid friction
 - boundary layer takes away too much fluid momentum
 - fluid cannot negotiate the pressure recovery leading to flow separation
- Fundamental difference between a slender body and a blunt body
 - emphasizes the insight in determining the dominant drag components for a given body shape
 - emphasizes the strong Reynolds number dependency of drag
 - Slender body:
 - due to good pressure recovery along body surface, skin friction drag is the dominant drag component
 - Blunt body:
 - at low Reynolds numbers,
 - flow separation is not significant
 - skin friction drag is dominant

- at high Reynolds numbers,
 - flow separation becomes severe (presence of a large wake region)
 - pressure drag becomes the dominant drag component
 - concept of streamlining: reduction of pressure drag
- Application of Bernoulli's equation in boundary layer and wake region is strictly forbidden!
 - o recall the assumptions behind Bernoulli's equations
- Applicability of Bernoulli's equation outside boundary layer to relate pressure variation along a streamline
 - o relationship between flow acceleration and pressure variation over an object
- Notion of terminal velocity
 - o perfect balance between body weight and drag force
 - o "explicit" quadratic variation of drag force with free-stream speed
 - o "implicit" Reynolds number dependency (hence velocity dependency) of drag coefficient
 - o determination of drag coefficient from a given terminal velocity is straight forward
 - o determination of terminal velocity from a given drag coefficient curve requires iterations
- Laminar-turbulent transition in a boundary layer on a curved surface
 - more efficient momentum transfer mechanism in turbulent boundary layers delays flow separation
 - o size reduction of the wake region behind a blunt body relative to that from an otherwise laminar boundary layer
 - o results in lower pressure drag at the expense of a higher skin friction drag
 - o dimples on golf ball as an example
- Lift
- o origin of lift: imbalance of pressure forces along body surface in a direction normal to flow direction as a result of flow asymmetry
- o overall higher pressure force on bottom surface relative to that on top surface
- o definition of lift coefficient

$$C_L = \frac{L}{\frac{1}{2}\rho V^2 A_W}$$

where A_w is the wetted area in the flow direction (slightly different from the frontal area used in drag coefficient)

- o operating conditions at take-off and cruise
- o notion of stall
 - drastic reduction in lift as angle of attack reaches the stall angle
 - highly unstable operating condition
 - maximum lift coefficient, stall speed
- Properties of the atmosphere at various altitudes
 - o Table A-26 in textbook