Mayhew/Sanders Exam 2

Problem 1 (40 points) DO NOT INTERPOLATE - USE CLOSEST TABULATED VALUE
An adiabatic steam turbine operates at steady-state. The steam enters the turbine at 3.5 MPa and $450^{\circ} \mathrm{C}$ and exits at 0.1 MPa . The mass flow rate through the turbine is $25 \mathrm{~kg} / \mathrm{s}$. The isentropic efficiency of the turbine is 0.71 .

FIND:
(a) Power output of the turbine in kW .
(b) Exit temperature and phase
(1)

Problem 2 (40 points) DO NOT INTERPOLATE - USE CLOSEST TABULATED VALUE
An adiabatic compressor draws $5 \mathrm{~kg} / \mathrm{s}$ of air (ideal gas) at 1 atm pressure (101 kPa), $27^{\circ} \mathrm{C}$, and delivers air at 5 atm and $247^{\circ} \mathrm{C}$. Find:
(a) (15 points) the required power input, in kW ,
(b) (15 points) the compressor efficiency, and
(c) (10 points) the rate of entropy production, in $\mathrm{kJ} / \mathrm{K}-\mathrm{sec}$.

Problem 3 (20 points) DO NOT INTERPOLATE - USE CLOSEST TABULATED VALUE
a) (5 points) Find the specific entropy $(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ of $\mathrm{R}-134 \mathrm{a}$ at 0.9 MPa and $12^{\circ} \mathrm{C}$.
b) (5 points) Find the specific volume $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ of $\mathrm{R}-134 \mathrm{a}$ at 0.9 MPa and $\mathrm{x}=0.5$
c) (10 points) Find the exit temperature of an adiabatic, reversible R-134a compressor with saturated vapor at 0.18 MPa at the inlet and an exit pressure of 0.5 MPa .

Lui/Richards Exam 2

Problem 1 (32 points)
Complete the information in the table for refrigerant 134a (R-134a). Entries that require calculations are worth 4 points. Entries that only require a simple look up are worth 2 points.

For phase, indicate whether it is a compressed liquid (CL), saturated liquid (SL), saturated mixture (SM), saturated vapor (SV), or superheated vapor (SHV).

For properties and quality, provide a number or indicate it is not applicable (N/A).

State	Phase	\boldsymbol{T} ${ }^{\circ} \mathrm{C}$	\boldsymbol{P} MPa	\boldsymbol{x}	\boldsymbol{v} $\mathrm{m}^{3} / \mathrm{kg}$	\boldsymbol{h} $\mathrm{kJ} / \mathrm{kg}$	\boldsymbol{s} $\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{K})$
1		60				172.71	
2		60					0.9527
3		60	0.8				
4		60	3.0				
5	$S V$		3.0				

For answers that require calculations, show your work below as you feel necessary. Full credit will be given if we only have to punch your numbers into a calculator.

Problem 2 (34 points)
A saturated mixture of water with an initial quality of 50%, a pressure of 100 kPa , and mass of 2 kilograms is contained in a piston cylinder device. During a constant pressure process, the water is heated to a temperature of $200^{\circ} \mathrm{C}$.
(a) Sketch the process on a $P-v$ and a $T-v$ diagram. Clearly label the initial state, final state, and the process line.
(b) Determine the magnitude and direction of the work and heat transfer for the process, in kJ .

Additional discussion: If the constant pressure process is replaced by a constant temperature process, how will the analysis be different?

Problem 3 (34 points)
One way to provide air for cooling the passengers on an airliner is to expand high pressure air through an adiabatic, steady-state turbine as shown in the figure.

The inlet and outlet information is shown on the figure. The inlet volumetric flow rate is $0.2 \mathrm{~m}^{3} / \mathrm{s}$, and the turbine has an isentropic efficiency of 75%.
Assume air can be modeled as an ideal gas and use the ideal gas tables. Do not interpolate-use closest values.
(a) Sketch the process on a T-s diagram.
(b) Determine the power output from the turbine, in kW .
(c) Determine the outlet air temperature.

$$
\begin{aligned}
& P_{1}=600 \mathrm{kPa} \\
& T_{1}=127^{\circ} \mathrm{C} \\
& \dot{Y}_{1}=0.2 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

$\eta_{\text {turbine }}=75 \%$

Hydrostatics

Determine the minimum vertical force, \boldsymbol{F}, required to hold the gate closed if its width (into the page) is w. Neglect the weight of the gate and assume the hinge is frictionless.

