1. Indicate in the following cases whether the given information is sufficient (YES) or insufficient (NO) in fully determining the thermodynamic state of the substance:

YES	NO	Known thermodynamic properties	Known phase
		pressure, temperature	compressed liquid
		pressure, temperature	superheated vapor
		pressure, temperature	saturated mixture
		pressure, temperature	saturated vapor
		pressure, specific volume	saturated liquid
		pressure, specific entropy	saturated mixture
		temperature, specific enthalpy	superheated vapor
		quality, temperature	saturated mixture

2. Given the following limited data from a property table of water at a pressure of 2 MPa:

Temperature		Specific enthalpy (h)
$300{ }^{\circ} \mathrm{C}$		$3023.5 \mathrm{~kJ} / \mathrm{kg}$
$350{ }^{\circ} \mathrm{C}$		$3137.0 \mathrm{~kJ} / \mathrm{kg}$

What is the value of specific enthalpy of water at a temperature of $330^{\circ} \mathrm{C}$ and a pressure of 2 MPa ?
3. According to the Compressed Liquid Approximation, how are the following thermodynamic properties approximated in the compressed liquid region.
$u(T, P)=$ \qquad

$$
\begin{aligned}
& v(T, P)= \\
& h(T, P)=
\end{aligned}
$$

$s(T, P)=$ \qquad
4. Sketch two constant pressure curves ($P=P_{1}, P=P_{2}$ with $P_{1}<P_{2}$) on the $T-v$ diagram below:

Indicate clearly their behavior in the two-phase region and label them clearly with P_{1} and P_{2}.
5. Sketch two constant temperature curves ($T=T_{1}, T=T_{2}$ with $T_{1}<T_{2}$) on the $P-v$ diagram below:

$$
P
$$

Indicate clearly their behavior in the two-phase region and label them clearly with T_{1} and T_{2}.

