ES 202 Fluid and Thermal Systems

Lecture 21: Isentropic Efficiencies (1/30/2003)

Assignments

- Homework:
 - 7-87, 7-90 in Cengel & Turner
 - Find rate of S_{gen} in 7-63 (Monday)
 - Find Δ S for 7-35 (no modification on Tuesday)
- Reading assignment
 - 8-5 to 8-7, 8-10, 8-11 in Cengel & Turner
 - ES 201 notes

Lecture 21

ES 202 Fluid & Thermal Systems

A Check List for You

• Property changes:

- internal energy, enthalpy, entropy
- general substances (State Principle) versus models
 - general substance: State Principle (exact differential)
 - definition of specific heats c_p , c_v
 - Gibbs equation (two different forms)
 - models: ideal gas, incompressible substance (resulting simplifications)
 - constant versus variable specific heats
- different solution methods:
 - constant specific heats (analytical solutions)
 - · variable specific heats:
 - direct integration (the hard way)
 - use property table (u, h, s^0, P_r, v_r) the easier way
 - "average" specific heats (may require iterations if temperatures are unknown)
- Special case of isentropic process

Lecture 21

ES 202 Fluid & Thermal Systems

5

<section-header><section-header>

Lecture 21

ES 202 Fluid & Thermal Systems

7

