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ES 202
Fluid and Thermal Systems

Lecture 20:
Isentropic Processes 

(1/28/2003)
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Road Map of Lecture 20
• Comments on Quiz 3

– saturated liquid (x = 0) and saturated vapor (x = 1)
– good job on interpolation problem
– weak on Compressed Liquid Approximation (quality is undefined in compressed liquid 

region)
– constant pressure and temperature curves on phase diagrams (shape and direction)

• Supplement to Lecture 19

• Property variation in an ideal gas: variable specific heats
– Gibbs equation
– graphical interpretation
– newly defined variables 

• Isentropic processes
– When is “constant entropy” a good assumption?
– entropy change for an ideal gas with constant specific heats (special case)
– entropy change for an ideal gas with variable specific heats (general case)

• Examples
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Interpretation of CLA on Phase Diagrams
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constant temperature line
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CLA stands for Compressed Liquid Approximation
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• Critical-point properties:

Substance Temperature Pressure

Air 132.5 K 3.77 MPa

Water 647.3 K 22.09 MPa

(extracted from Table A-1 in Cengel & Turner)

• Relationship between cv and cp
– Which one has a higher value?
– What is the reason for the difference?
– Apply your reasoning to the Ideal Gas Model and Incompressible 

Substance Model

Supplement to Lecture 19
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Property Variation in an Ideal Gas
• Recall the Gibbs equation (relationship between changes in properties)

• For an ideal gas with finite temperature change:

• How to evaluate the integrals?  (graphical interpretation)
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An Easy Way Out
• For variable specific heats, due to the frequent usage of the integrals, 

its value (from a common reference point) is tabulated (e.g. Table A-
17 in Cengel & Turner)

• A new variable is defined:

which is the temperature dependent part in entropy change

• By making use of this newly defined variable, the entropy difference 
between any two states can be easily expressed as:
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Constant Property Processes
• constant pressure (isobaric; piston-cylinder model)

• constant volume (rigid system boundaries)

• constant temperature (sufficient time for heat transfer with 
environment)

• constant entropy (reversible, adiabatic)

• They serve as good models for complex problems.

• When is “constant entropy” a good assumption?
– process time scale short compared with heat transfer time scale (i.e. heat 

transfer rate much slower than other processes in the problem)
– for example, rapid compression/expansion process
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Isentropic Processes
• Recall the Gibbs equation for an ideal gas:

• For an isentropic proces (ds = 0),
– you only need to know one more thermodynamic property to fix the state
– the Gibbs equation can be reduced to:

• The relationship between temperature, pressure and specific volume can be 
obtained by direct integration of the above equations.
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Isentropic Processes (II)
• For the special case of constant specific heats, direct integration 

yields:

where k = cp / cv > 1

• The results confirm the previous claim that if you know one more
thermodynamic property (temperature, pressure or specific volume), you 
know everything else!
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Isentropic Processes (III)
• For the general case of variable specific heats, we can recall the newly 

defined variable s0:

which further defines two new variables (useful for isentropic analysis):
Relative pressure

Relative specific volume:
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