Road Map of Lecture 20

- Comments on Quiz 3
- saturated liquid $(x=0)$ and saturated vapor $(x=1)$
- good job on interpolation problem
- weak on Compressed Liquid Approximation (quality is undefined in compressed liquid region)
- constant pressure and temperature curves on phase diagrams (shape and direction)
- Supplement to Lecture 19
- Property variation in an ideal gas: variable specific heats
- Gibbs equation
- graphical interpretation
- newly defined variables
- Isentropic processes
- When is "constant entropy" a good assumption?
- entropy change for an ideal gas with constant specific heats (special case)
- entropy change for an ideal gas with variable specific heats (general case)
- Examples

Interpretation of CLA on Phase Diagrams

Supplement to Lecture 19

- Critical-point properties:

Substance	Temperature	$\underline{\text { Pressure }}$
Air	132.5 K	3.77 MPa
Water	647.3 K	22.09 MPa
(extracted from Table A-1 in Cengel \& Turner)		

- Relationship between c_{v} and c_{p}
- Which one has a higher value?
- What is the reason for the difference?
- Apply your reasoning to the Ideal Gas Model and Incompressible Substance Model

Property Variation in an Ideal Gas

- Recall the Gibbs equation (relationship between changes in properties)

$$
T d s=d u+P d v \quad \text { or } \quad T d s=d h-v d P
$$

- For an ideal gas with finite temperature change:

$$
\begin{array}{clll}
\Delta u=\int d u=\int c_{v}(T) d T & , & \Delta h=\int d h=\int c_{p}(T) d T \\
\Delta s=\int d s=\int c_{v}(T) \frac{d T}{T}+\int R \frac{d v}{v} & \text { or } & \Delta s=\int c_{p}(T) \frac{d T}{T}-\int R \frac{d P}{P}
\end{array}
$$

- How to evaluate the integrals? (graphical interpretation)

An Easy Way Out

- For variable specific heats, due to the frequent usage of the integrals, its value (from a common reference point) is tabulated (e.g. Table A17 in Cengel \& Turner)
- A new variable is defined:

$$
s^{0}=\int_{0}^{T} c_{p}(T) \frac{d T}{T}
$$

which is the temperature dependent part in entropy change

- By making use of this newly defined variable, the entropy difference between any two states can be easily expressed as:

$$
s_{2}-s_{1}=s_{2}^{0}-s_{1}^{0} \underbrace{-R \log \left(\frac{P_{2}}{P_{1}}\right)}_{\begin{array}{c}
\text { contribution due to } \\
\text { pressure change }
\end{array}}
$$

Constant Property Processes

- constant pressure (isobaric; piston-cylinder model)
- constant volume (rigid system boundaries)
- constant temperature (sufficient time for heat transfer with environment)
- constant entropy (reversible, adiabatic)
- They serve as good models for complex problems.
- When is "constant entropy" a good assumption?
- process time scale short compared with heat transfer time scale (i.e. heat transfer rate much slower than other processes in the problem)
- for example, rapid compression/expansion process

Isentropic Processes

- Recall the Gibbs equation for an ideal gas:

$$
d s=c_{v}(T) \frac{d T}{T}+R \frac{d v}{v} \quad \text { or } \quad d s=c_{p}(T) \frac{d T}{T}-R \frac{d P}{P}
$$

- For an isentropic proces $(d s=0)$,
- you only need to know one more thermodynamic property to fix the state
- the Gibbs equation can be reduced to:

$$
c_{v}(T) \frac{d T}{T}=-R \frac{d v}{v} \quad \text { or } \quad c_{p}(T) \frac{d T}{T}=R \frac{d P}{P}
$$

- The relationship between temperature, pressure and specific volume can be obtained by direct integration of the above equations.

Isentropic Processes (II)

- For the special case of constant specific heats, direct integration yields:

$$
\begin{aligned}
& \left(\frac{T_{2}}{T_{1}}\right)=\left(\frac{v_{1}}{v_{2}}\right)^{k-1} \longrightarrow T v^{(k-1)}=\text { constant } \\
& \left(\frac{T_{2}}{T_{1}}\right)=\left(\frac{P_{2}}{P_{1}}\right)^{(k-1) / k} \quad \longrightarrow \quad T P^{(1-k) / k}=\text { constant } \\
& \left(\frac{P_{2}}{P_{1}}\right)=\left(\frac{v_{1}}{v_{2}}\right)^{k} \quad \longrightarrow \quad P v^{k}=\text { constant }
\end{aligned}
$$

where $k=c_{p} / c_{v}>1$

- The results confirm the previous claim that if you know one more thermodynamic property (temperature, pressure or specific volume), you know everything else!

Isentropic Processes (III)

- For the general case of variable specific heats, we can recall the newly defined variable s^{0} :

$$
s^{0}=\int_{0}^{T} c_{p}(T) \frac{d T}{T}
$$

which further defines two new variables (useful for isentropic analysis):
Relative pressure

$$
P_{r}=\exp \left(\frac{s^{0}}{R}\right) \longrightarrow \frac{P_{2}}{P_{1}}=\frac{P_{r 2}}{P_{r 1}}
$$

Relative specific volume:

$$
v_{r}=\frac{T}{P_{r}} \quad \longrightarrow \quad \frac{v_{2}}{v_{1}}=\frac{v_{r 2}}{v_{r 1}}
$$

