ES 202 Fluid and Thermal Systems

Lecture 20: Isentropic Processes (1/28/2003)

Road Map of Lecture 20

- Comments on Quiz 3
 - saturated liquid (x = 0) and saturated vapor (x = 1)
 - good job on interpolation problem
 - weak on Compressed Liquid Approximation (quality is undefined in compressed liquid region)
 - constant pressure and temperature curves on phase diagrams (shape and direction)
- Supplement to Lecture 19
- · Property variation in an ideal gas: variable specific heats
 - Gibbs equation
 - graphical interpretation
 - newly defined variables
- · Isentropic processes
 - When is "constant entropy" a good assumption?
 - entropy change for an ideal gas with constant specific heats (special case)
 - entropy change for an ideal gas with variable specific heats (general case)
- Examples

Lecture 20

ES 202 Fluid & Thermal Systems

2

	Sup	plement to L	Lecture 19	
• C	Critical-point properties:			
S	ubstance	<u>Temperature</u>	Pressure	
А	ir	132.5 K	3.77 MPa	
W	Vater	647.3 K	22.09 MPa	
(e	extracted from	Table A-1 in Cengel &	Turner)	
-	Which one hadWhat is the result	tween c_v and c_p as a higher value? eason for the difference? easoning to the Ideal Gas N odel	Nodel and Incompressible	
Lectur	re 20	ES 202 Fluid & Thermal Systems		4

