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Abstract

In this work, we demonstrate the performance of a
Kalman �lter con�guration applied to the task of esti-
mating the bias values in accelerometers and angular rate
sensors of a rigid projectile in atmospheric 
ight. This
�lter is based on the dynamics closed form solution pro-
vided by projectile linear theory and provides for arbitrary
placement of the accelerometers. The bias values are sub-
tracted from subsequent sensing and provide a signi�cant
improvement in inertial measurement unit performance.

List of Symbols

A~aB=C Acceleration of point B
with respect to (wrt) C

D~�E Angular acceleration of
body E in the D frame

F~vG=H Velocity of point G wrt H in the F frame
J~!K Angular velocity of body K in the J frame
L~rM=N Position vector from N to M

in the L frame
~ak Acceleration residual at kth time step
�BL Distance from center of gravity to

Buttline of accelerometer
�SL Distance from center of gravity to

Stationline of accelerometer
�WL Distance from center of gravity to

Waterline of accelerometer
CX0 Zero yaw axial aerodynamic coe�cient
CX2 Yaw angle squared axial force aerodynamic

coe�cient
CNA Normal force aerodynamic coe�cient
CLDD Roll moment aerodynamic coe�cient

due to �n cant
CLP Roll damping moment aerodynamic coe�cient
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CMQ Pitch rate damping moment
aerodynamic coe�cient

D Projectile characteristic length
Ixx Roll inertia of the projectile
Iyy Pitch inertia of the projectile
K Kalman gain matrix
m Projectile mass
p; q; r Components of the angular velocity vector

about the X;Y; and Z, axes respectively
P Error covariance matrix
u; v; w Translation velocity components of the

projectile center of mass
V Magnitude of mass center velocity
x; y; z Position vector components of the

projectile center of mass
 ; �; � Euler yaw, pitch and roll angles

Introduction

The military projectile of tomorrowwill combine three
important new technologies{miniaturized sensors, optimal
estimation, and control based on improved linear mod-
els. With the development of miniaturized inertial sen-
sors, guidance and control systems are now being devel-
oped for projectiles. Optimal estimation is accomplished
by the Kalman �lter, an invention widely used in engi-

neering practice since 1960 [1]. The basic idea is that of
a �lter that carries an internal model of the dynamic sys-
tem. The state of this internal dynamicmodel is compared
with noisy measurements of the state of the physical sys-
tem in order to better estimate the actual state of the
physical system. Projectile linear theory provides a com-
putationally e�cient model of projectile dynamics. Ballis-
ticians have been studying linearized models of projectile

dynamics for nearly 50 years [2]; [3]. This work takes an
important step forward in combining the three technolo-
gies.
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Motion Equations from Projectile Linear Theory

The acceleration measured at an arbitrary point on a

rigid body in the body frame is given by Equation 1 [4].

~aP=I = ax {̂B + ay |̂B + azk̂B (1)
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Where the translational velocity of the mass center of the
projectile is

~v
=I = u{̂B + v|̂B +wk̂B (3)

While the angular velocity of the projectile body is

~!B=I = p{̂B + q|̂B + rk̂B (4)

Furthermore the distance vector from the projectile mass
center to the sensor point is

~r
!P = �SL{̂B +�BL|̂B +�WLk̂B (5)

Projectile linear theory provides a convenient means
of estimating the independent variables in Equation 2.
Through a series of asumptions, we have reduced the non-
linear projectile dynamics equations to a set of linear equa-
tions which can be solved closed form for the projectile

state [3]. Previous work demonstrated the use of these
equations for a very e�cient prediction of the projectile

trajectory [5]. Here we use the predicted state derivative
as well as the states themselves to �ll in the right hand
side of Equation 2. The two central assumptions in lin-
ear theory are: 1) The linear coordinate system is not
allowed to roll in relation to inertial space, and 2) The in-
dependent variable is changed from time to dimensionless
arclength, s. Transformation from the no-roll frame to
the body frame is accomplished through a simple rotation
matrix. For example:�
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Transformation from arc length derivatives to time deriva-
tives is a simple multiplication.
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�
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D

�
�0 (7)

Where the dotted dummy variable is a time derivative,
the primed dummy variable is an arc length derivative, V
is the total velocity, and D is the projectile characteristic
length.

The state derivatives in the linear domain are given
by the following equations:
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Combining Equations 2, 7,8,9,10, and 11, we obtain
the following expressions for the accelerations in the no-
roll frame.
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The angular rates in the no-roll frame are given by the
closed-form solution of Equations 6 and 7.
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And for � = v; w; q; r and j = 1; 2; 3; 4
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Where (�)�j denotes the jth fow of the rank one outer
product of left and right eigenvectors.
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And the arctangent is a four-quadrant arctangent.
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The homogeneous response is governed by the mode
shapes:
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Where:

K = (E � A) + 2A+ iF (35)
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The accelerations and angular rates in the body frame are
then given by Equation 6 where � is given by Equation
44.

�(s) =
2D

V PCLP
p0 exp

�
PCLP
2

s

�
+ �0 �

2D

V PCLP
p0

+
2CLDD
CLP

�
2

PCLP
exp

�
PCLP
2

s

�
� s
�
(44)

3



Sensor Bias Standard Deviation

X accelerometer 32.2ft=s2 3.2ft=s2

Y accelerometer -32.2ft=s2 3.2ft=s2

Z accelerometer 32.2ft=s2 3.2ft=s2

body i axis gyro -0.2rad=s2 0.02rad=s2

body j axis gyro 0.2rad=s2 0.02rad=s2

body k axis gyro -0.2rad=s2 0.02rad=s2

Table 1: Baseline sensor noise model

Kalman Filter for Bias Estimation

Given the acceleration and angular rate esimates
above, and the measured accelerations and angular rates,
the bias estimation reduces to recursive estimation of a
constant vector unknown [6]. That is, the bias is as-
sumed to be constant, and thus the Kalman time update
equation is simply:

~ak+1 = ~ak (45)

The covariance is updated using the measurement update
equation only:

Pk+1 = (I�Kk+1)Pk (46)

Where:
Kk+1 = Pk (Pk +R)�1 (47)

Which ultimately means that the error covariance is al-
ways 'shrinking' i.e. our con�dence in the estimate of bias
only improves as time moves forward. This can be ex-
plained intuitively simply by realizing that since the bias
is a statc quantity, each measurement should only take
us closer to the true value. Finally, the bias estimate is
updated using the computed Kalman gain.

~ak+1 = ~ak +K (&k+1 � ~ak) (48)

Where &k+1 is the vector di�erence between measured ac-
celerations and angular rates and those obtained through
linear theory.

Note also, that there are no �lter dynamics, and thus
no dynamic coupling of states. Thus, the �lter can be
subdivided into six scalar �lters.

Performance Comparison

The proposed �lter con�guration is shown in Figure
1. The IMU and linear theory �lters begin with the true
initial state. The IMU integration is performed using a

fourth-order Runge-Kutta method [7].

Accelerometers

Gyros

Mux Σ IMU

Linear
Theory

Kalman
Filter

X0

X0

Estimated
State

Figure 1: Filter Con�guration
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Figure 2: Horizontal Swerve

We �rst optimize the �lter noise model and update
frequency. The trade studies are shown in Figures 13 and
14. The trade study criterion is simply de�ned as the 2
norm of true terminal position minus terminal navigation
estimate in three dimensions. The optimal noise model
was found to be 6.376 times the nominal or 'true' noise
model. Note that for these trade studies, we set the P
matrix equal to identity. The diagonal elements of the R
matrix are varied. Thus, we �nd the optimal noise model
to be 6.376 time the actual variance of the Gaussian noise.
Also, we choose an initialR whose elements are 100 times
this optimal noise model. This allows the �lter to converge
quickly during the �rst bias estimate. After the �rst and
each subsequent bias estimate, the R matrix is reset to
6.376 times the noise variance.

The trade study of terminal navigation error versus
bias update period is shown in Figure 14. Using the op-
timal noise model found above, we now seek the optimal
bias update period. The plot shows two local minima,
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Figure 3: Vertical Swerve

the lowest of which is at 0.0001 sec. However, we expect
that updating the bias estimate at such small intervals will
not provide robust estimation when the noise has variance
nearly equal to or greater than the bias. Thus, we choose
to operate at the second local minimum. This period is
found to be 0.1125 sec.

We simulated the performance of this �lter con�gura-
tion using sensors with the noise characteristics shown in
Table 1.

The results are shown in Figures 2-9. In Figures 2-9
the corrected IMU state is a solid line, uncorrected IMU
state is a dotted line, and the actual state is shown as
dash-dot.

In Figures 10 - 12, we show respectively, the X, Y and
Z accelerometer output with bias correction versus down-
range distance. This demonstrates how the �lter corrects
gradually for the sensor bias. Notice also that the noise
and bias in Y and Z are much greater than the magnitude
of the true signals.

Finally, we varied the noise while holding bias con-
stant and vice-versa to explore the �lter's robustness to
noise and bias magnitudes. In each case, we assumed that
we know a priori the true noise model and set our R ma-
trix accordingly. The results are shown in Figures 15 and
16. Here we also compare results for bias update every
0.0001 seconds and 0.1125 seconds. The 0.1125 second
update interval results are shown as a solid line while the
0.0001 second results are a dashed line. Figure 15 indi-
cates that there is a point of diminishing degradation due
to increasing noise. The navigation solution at this point
is, however outside of acceptable limits. In Figure 16, the
navigation error appears to be a linear function of sensor
bias.
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Figure 4: Yaw angle

Note that performance could be further improved by
adding another Kalman �lter based on linear theory to
�lter the IMU output.
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Figure 5: Pitch angle
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Figure 6: Roll angle
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Figure 7: Forward velocity
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Figure 9: Body k axis velocity
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Figure 10: X accelerometer output with bias correction and

linear estimate
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Figure 11: Y accelerometer output with bias correction and

linear estimate
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Figure 12: Z accelerometer output with bias correction and

linear estimate
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