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The flight of symmetric projectiles is modeled by linear and quasi–linear

ODEs known respectively as projectile linear theory and modified projec-

tile linear theory. A Gauss pseudo–spectral collocation may be used to

discretize both linear and non–linear ODE models, converting the problem

into a set of coupled algebraic equations. Since the approximation is exact

at the collocation points, accurate trajectory predictions may be rendered

using a small number of points, resulting in very rapid solution. The method

allows for solution of high launch elevation trajectories and can account for

varying aerodynamic coefficients as well. Results which are compared to a

full 6DOF simulation are shown for standard linear, modified linear, and

modified linear with varying aero coefficients. By also discretizing the cost

function for optimal control, the problem of optimal trajectory design is

rendered as an algebraic cost function with algebraic equality constraints.

Such a problem is solved by appending equality constraints to the cost

function integrand with Lagrange multipliers. The resulting large set of

non–linear algebraic equations is then numerically solved. Feasibility of the

optimal trajectories was demonstrated by commanding forward canards by

a gain scheduled LQR inner loop. The projectile tracked desired trajecto-

ries with very little error resulting in a large reduction in dispersion at the

target.
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Nomenclature

Ixx, Iyy roll and pitch inertia expressed in the projectile reference frame (sl-ft2)

A,B Linear State Space Matrices

CNA normal force aerodynamic coefficient

CX0 axial force aerodynamic coefficient

CLP roll rate damping moment aerodynamic coefficient

CLDD fin rolling moment aerodynamic coefficient

CMA pitch moment due to AOA aerodynamic coefficient

CMQ pitch rate damping moment aerodynamic coefficient

D projectile characteristic length (ft)

f vector of non–linear algebraic constraints

g gravitational constant = 32.2 (ft/s2)

I identity matrix

LN Nth order Legendre polynomial

m projectile mass (sl)

N number of collocation points

p, q, r angular velocity vector components expressed in the fixed plane reference frame (rad/s)

S = πD2/4, projectile reference area (ft2)

SLcg stationline of the projectile c.g. location (ft)

SLcp stationline of the projectile c.p. location (ft)

s downrange distance (calibers)

u, v, w translation velocity components of the projectile center of mass resolved

in the fixed plane reference frame (ft/s)

u1, u2 =CNα,canδcanz, CNα,canδcany canard commands in no roll frame without effectiveness scaling

V =
√
u2 + v2 + w2, magnitude of the mass center velocity (ft/s)

x, y, z position vector components of the projectile mass center expressed in the inertial reference frame

Greek

ρ air density (sl/ft3)

ψ, θ, φ Euler yaw, pitch, and roll angles (rad)

∆ Legendre–Gauss differentiation matrix

Λ cost function for optimality

Subscript

i, j row i, column j of matrix

f horizon or target

can canard
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I. Introduction

For decades, ballisticians have sought methods to rapidly predict the free flight trajectory

of a projectile. Such predictions are useful in identifying aerodynamic coefficients of

projectiles, and providing guidance, navigation and control to guided missiles. Prior to the

widespread use of digital computers, a standard linear model (PLT) was developed, allowing

for closed–form solution of a set of ten coupled ODEs.1 This method is only valid for ‘flat

fire’ trajectories where the launch elevation is low. With widespread deployment of digital

computers, numerical solution of fully non–linear ODEs is possible, but still time consuming,

and impractical for real time guidance and control. In 2005, Hainz and Costello2 introduced

Modified Projectile Linear Theory (MPLT) as a synthesis of linearization and numerical

integration. This technique allows for high launch elevation while taking advantage of roll–

yaw decoupling such that 12 ODEs are solved in a piecewise fashion. In order to account for

a widely varying pitch, the solution must be propagated forward in time with a relatively

small time step.

Pseudospectral methods have been used for many years to numerically solve partial dif-

ferential equations. They have recently come into prominence for discretizing non–linear

optimal control problems, and providing a direct way to a numerical solution. After the

seminal work by Elnagar, Kazemi, and Razzaghi,3 pseudo–spectral methods were rapidly

deployed to many non–linear optimal control problems. Two commericially available exten-

sions to Matlab are now available under the names ‘GPOPS’,4 and ‘DIDO’.5

In this work, we will show how a Gauss pseudo–spectral (GPS) collocation may be used

to discretize both linear and non–linear models, converting the problem into a set of coupled

algebraic equations. Since the approximation used is exact at the collocation points, accurate

trajectory predictions may be found using a small number of points, resulting in a very rapid

solution.

The method is then extended to the design of optimal trajectories for guidance of indi-

rect shots by introducing two controls in the no–roll frame. A cost function is chosen and

discretized by a Gauss quadrature. The discretized dynamics are then treated as equality

constraints resulting in a problem that can be solved as a large set of coupled algebraic equa-

tions. These equations are differentiated such that they are solved using a gradient based

search. No special software is required for the solution.

Flyability of the optimal trajectories is demonstrated on a high fidelity 6DOF simulation

assuming two pair of forward canards. A rudimentary inner control loop is designed by

LQR with gain scheduling based upon predicted optimal trajectories. The method is able

to find optimal trajectories for a wide range of launch elevations. Simulation demonstrates

a remarkable reduction in dispersion.
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II. Linear and Modified Linear Theory Models

The Modified Linear Theory Model consists of the following ten quasi–linear ODEs.

ẏ = cθV ψ + v (1)

ż = −V sθ + cθw (2)

θ̇ = q (3)

ψ̇ =
r

cθ
(4)

v̇ = −Av − V r + b1u2 (5)

ẇ = −Aw + V q + gcθ − b1u1 (6)

q̇ = Cw + Eq − IXX
IY Y

pr + b2u1 (7)

ṙ = −Cv + IXX
IY Y

pq + Er + b2u2 (8)

V̇ = −πρD
2

8m
CX0V

2 − gsθ (9)

ṗ =
πρV 2D3

8IXX
CLDD +

πρD4V

16IXX
pCLP (10)

Where

A =
ρSV

2m
CNA (11)

C =
ρSV

2Iyy
CMA (12)

E =
ρSV D2

4Iyy
CMQ (13)

CMA = (SLCOP − SLCG)CNA (14)

b1 =
ρV 2Scan

2m
(15)

b2 =
ρV 2Scan
2IY Y

(SLcan − SLCG) (16)

The equations are written in scalar form to easily facilitate the collocation in the sequel.

This formulation uses a ‘no roll’ frame intermediate to the traditional body fixed and ground

fixed frames. This is permissible assuming the projectile is aerodynamically and inertially

symmetric. Unlike customary linear theory formulations, the independent variable used here

is time. Using time as the independent variable provides a scaling that keeps the equations

well conditioned after collocation. This scaling also simplifies sensitivities with respect to

total velocity which will be required for algebraic solution of the necessary conditions for

optimality.
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For open–loop solutions, Eqs. (1)–(10) are rewritten with non–dimensional arclength

traveled s as the independent variable. This is accomplished by simply multiplying the

RHS of each equation by the factor D/V , and using prime (′) rather than dot to denote the

derivative wrt s. Standard linear theory (PLT) equations may then be found by subsequently

assuming θ to be small such that cθ = 1 and sθ = θ. For simplicity we assume zero winds.

This study will consider only fin stabilized projectiles such that the Magnus term is neglected.

III. Gauss–Legendre Pseudo–spectral Collocation

Sets of coupled non–linear ODEs may be discretized using Legendre polynomials as the

underlying basis functions. The presentation here follows closely from Elnagar, Kazemi

and Razzaghi.3 Let LN(x) represent the Legendre polynomial of order N . The Legendre–

Gauss–Lobatto (LGL) collocation points are defined as x0 = −1, xN = 1 with interior

points xm, m = 1, . . . , N − 1 found from the roots of L̇N , the first derivative of LN . This

choice allows boundary conditions to be enforced at the initial and final times desired in the

solution.

If a Lagrange polynomial is constructed whose roots are the LGL points, it can be written

as:

λl(x) =
1

N(N + 1)LN(xl)
• (x2 − 1)L̇N(x)

x− xl
, (l = 0, 1, . . . , N). (17)

Lagrange polynomials have the Kronecker delta property such that

λl(xj) =











1 if l = j

0 if l 6= j.
(18)

Any function Γ(x) can then be approximated by the Lagrange interpolating polynomial as

ΓN(x) =
N
∑

l=0

Γ(xl)λl(x) (19)

Because λl(x) has the Kronecker delta property

ΓN(xk) = Γ(xk), k = 0, 1, . . . , N. (20)

The derivative of ΓN(x) can then be found by differentiating Eq. (19). The result is a matrix

multiplication which can then be used to discretize differential equations.

Γ̇N(xm) =
N
∑

l=0

∆mlΓ(xl) (21)
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where ∆ = (∆ml) is an (N + 1)× (N + 1) matrix given by

∆ = (∆ml) =















































LN(xm)

LN(xl)

1

(xm − xl)
m 6= l

−N(N + 1)

4
m = l = 0

N(N + 1)

4
m = l = N

0 otherwise

(22)

Here we use the symbol ∆ for the differentiation matrix so as not to conflict with D the

projectile characteristic length or diameter. Note that the LGL points, and the differentiation

matrix will be computed to double precision on demand using built–in Matlab functions roots,

polyval, and polyder. The method is limited to about 35 collocation points—beyond this the

differentiation matrix becomes ill–conditioned due to the high order underlying interpolation

polynomial. Also note that the differentiation matrix is automatically scaled assuming a time

span ot 2s (−1 ≤ t ≤ 1). Thus when discretizing ODEs, the scaling must be modified to

reflect the actual time span. For instance, ẋ = Ax+Bu becomes:

2

tf − t0
∆X = AX+Bu

The Gauss–Lobatto quadrature approximates a continuous integral to a high degree of

accuracy with a discrete sum. For instance:

∫ tf

t0

f(t)dt ≈ tf − t0
2

N
∑

i=1

wi • f(τi)

Where τi are the LGL abscissa points projected onto the actual time span by a linear mapping

τi =
tf − t0

2
xi +

tf + t0
2

and wi are the LGL quadrature weights found by:

wi =
2

N(N + 1)

1

[LN(xi)]
2
, i = 0, 1, . . . , N.

Most of the recent applications of Gauss Pseudospectral collocation are motivated by the

solution to a non–linear optimal control problem. In that context, the dynamic constraints

are discretized by using the differentiation matrix. The objective function is evaluated using

a Gauss quadrature at the LGL points. The result is an optimization problem with algebraic

constraints that can be solved using non–linear programming. This work will explore the use
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of GPS discretization in rapidly solving for both flat fire and indirect open loop trajectories

with a high degree of accuracy. Solving the algebraic constraints as an open–loop system

is a valuable step toward solving the closed–loop problem for the purposes of 1) checking

that dynamic constraints are properly represented, and 2) providing a reasonable starting

guess for the non–linear programming solution of the optimal control problem. This paper

will conclude by finding optimal closed–loop trajectories for indirect fire by using the LGL

collocation to produce an augmented set of non–linear algebraic necessary conditions which

can be solved using a Newton iteration. When only equality constraints are considered, the

necessary conditions may be written as a large set of non–linear algebraic equations, and

special software is not required to solve them.

IV. Gauss Pseudo–spectral Collocation of the PLT and MPLT

Equations

After scaling the RHS of Eqs. (1)-(10) by D/V and changing the independent variable

to non–dimensional arclength traveled, the differentiation matrix is applied to render an

algebraic set of constraints in residual form.

2

sf
∆y − cθψD − D

V
v = 0 = f1 (23)

2

sf
∆z + Dsθ −

Dcθ
V

w = 0 = f2 (24)

2

sf
∆θ − D

V
q = 0 = f3 (25)

2

sf
∆ψ − D

V cθ
r = 0 = f4 (26)

2

sf
∆v + Av +Dr − b1u2 = 0 = f5 (27)

2

sf
∆w + Aw −Dq − Dgcθ

V
+ b1u1 = 0 = f6 (28)

2

sf
∆q − C

D
w − Eq + Fr − b2u1 = 0 = f7 (29)

2

sf
∆r +

C

D
v − Fq − Er − b2u2 = 0 = f8 (30)

2

sf
∆V +

πρD3

8m
CX0V +

Dg

V
sθ = 0 = f9 (31)

2

sf
∆p − πρV D4

8IXX
CLDD − πρD5

16IXX
CLPp = 0 = f10 (32)
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Where sf is the total arclength traveled from launch to target and F = (D/V )(IXXp)/(IY Y )

Collocation maps the independent variable from 0 ≤ s ≤ sf to −1 ≤ τ ≤ 1.

Eqs. (23)–(32) constitute a non–linear algebraic set hereafter referred to as modified

projectile linear theory (MPLT). Products and quotients of state variables such as cθψ and

v/V will be implemented using array arithmetic in Matlab. This will allow all states including

p, V , and θ to vary over the entire trajectory. Unlike ref[2], aerodynamic coeffs. and

atmospheric density will also vary over the trajectory. For ballistic trajectories, the controls

u1, u2 are set to zero.

IV.A. Standard Linear Implementation

For the standard flat–fire projectile linear theory (PLT), the state vector is limited to

[ y z θ ψ v w q r ]T while p, V , and aerodynamic coeffs. are held constant. This

allows the remaining algebraic equations to be written in matrix form as:

ZX = Y (33)

Where

Z =















































































2

sf
∆ 0 0 −DI −D

V
I 0 0 0

0
2

sf
∆ DI 0 0 −D

V
I 0 0

0 0
2

sf
∆ 0 0 0 −D

V
I 0

0 0 0
2

sf
∆ 0 0 0 −D

V
I

0 0 0 0
2

sf
∆+ AI 0 0 DI

0 0 0 0 0
2

sf
∆+ AI −DI 0

0 0 0 0 0 −C
D
I

2

sf
∆− EI F I

0 0 0 0
C

D
I 0 −F I 2

sf
∆− EI















































































Each entry in Z is an N ×N block where N is the number of collocation points chosen.

Y =
[

0 0 0 0 0 Dg

V
0 0

]T

.
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Initial conditions are enforced by adding appropriate rows to Z and Y then deleting the first

row of each state block. The state history X is then solved for by the LU decomposition

embedded in the Matlab ‘backslash’ (\) operator.

IV.B. Modified Linear Implementation

For the non–linear case, an initial solution guess is found from the linear solution. Eqs.

(23)–(32) are evaluated at the current guess. A Jacobian matrix is formed by differentiating

Eqs. (23)–(32) with respect to the states, resulting in

J =
∂fi
∂χj

(34)

Where the functions fi are shown in Eqs. (23) through (32). The state vector is defined as

χ = [ y z θ ψ v w q r V p ]T .

Non-zero entries of the Jacobian are shown in Appendix A. Strictly speaking, column 9 of

rows 5–10 would also require terms reflecting sensitivity to changes in aerodynamic coeffi-

cients due to changes in V . For instance

f5 = f(A) = f(A(CNA(M(V ))))

or A is a function of CNA which is a function of Mach and hence and function of V . This

sensitivity is not included in the current Jacobian formulation, however it is included by

default in the residual calculation as speed of sound is allowed to vary with altitude, and all

aero coefficients are allowed to vary with Mach. Allowing this variance provides for a slight

improvement in the trajectory prediction as will be seen in the sequel.

Starting with the solution to the corresponding PLT model, a Newton–Raphson iteration

is used to find the non-linear solution as follows:

Xn+1 = Xn − J−1f (35)

where

f = [ f1 f2 . . . f10 ]T |X=Xn .

The search tends to converge in three to five iterations such that ‖f‖
2
< 10−4. Each iter-

ation requires the solution of an nSN × nSN linear system which is performed by the LU

decomposition embedded in the Matlab ‘backslash’ (\) operator.
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IV.C. Optimal Guidance of Trajectories by MPLT

After discretization, the open–loop cases are fully constrained sets of algebraic equations.

Introducing the controls provides nUN new free variables where nU is the number of controls.

In this work, two controls are assumed, corresponding to non–dimensional normal forces

generated by sets of forward mounted canards in the no roll vertical and horizontal directions.

The optimal trajectory from launch point to target can be determined by the following

method.

Define a cost function for optimal control:

Λ =
1

2
xT (tf )Sx(tf ) +

1

2

∫ tf

0

xTQx+ uTRudt. (36)

The integral can be converted to an algebraic expression through a Gauss quadrature.

Λ =
1

2
xT (tf )Sx(tf ) +

1

2

tf
2

(

xTQWx+ uTRWu
)

(37)

where W is a diagonal matrix of Gauss quadrature weights W = diag(wk). Combining Eq.

(37) with Eqs. (23)-(32), we have

min
x,u

Λ(x, u)such that f(x, u) = 0 (38)

a problem that can be solved by adjoining the constraints to the cost function and taking

derivatives to form the necessary conditions for a stationary point.6

The dynamic constraints for indirect fire are given by Eqs. (1)–(10). For the optimal

guidance problem these are converted to algebraic constraints by application of the differ-

entiation matrix similar to Eqs. (23)–(32), however keeping the original scaling with time

as the independent variable. The scaling with arclength traveled is convenient for the pre-

vious tasks, however it results in an ill–conditioned set of constraints when working with an

unspecified terminal time as is the case with indirect fire. For brevity, the revised equations

are presented in Appendix B.

Since the independent variable in this formulation is time, the horizon distance tf is not

known a priori for an indirect shot with the target placed at (xf , 0, 0). Thus the horizon is

treated as a free variable (unspecified terminal time), and an additional constraint is found

by a Gauss quadrature which finds downrange distance in terms of total velocity and Euler

angles. That is

xf =
∫ tf

0

V cθcψdt.
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The integral is replaced by a Gauss quadrature and written as

xf =
tf
2

∑

k

wkVk cos θk cosψk

Thus, the additional constraint is written

tf
2

∑

k

wkVk cos θk cosψk − xf = 0 = f11 (39)

Now form a Hamiltonian by adjoining the constraints

H = Λ + λT f

Form the necessary conditions

∂H

∂x
=

∂Λ

∂x
+ λT

∂f

∂x
= 0 (40)

∂H

∂u
=

∂Λ

∂u
+ λT

∂f

∂u
= 0 (41)

f = 0 (42)

Eqs. (40)-(42) comprise 2nx + nu eqns. with 2nx + nu unknowns x, λ, and u. Including

Eq. (39) adds one equation each to (42) and (40) with unknowns tf and λ11, for a total of

2(nx + 1) + nu. For the discretized problem, 2nx + nu eqns. are formed at each collocation

point for a grand total of (2nx + nu)N + 2 eqns. Note that ∂f/∂x is the Jacobian found in

section IV.B but rescaled with time as independent variable and unpacked in Appendix B.

A row and column are appended to the previous formulation to include f11 and derivatives

wrt tf .

∂Λ

∂u
=

tf
2
RWu

∂Λ

∂x
= Sx(tf ) +

tf
2
QWx

∂f

∂u1
=

[

0 0 0 0 0 −b1 b2 0 0 0 0

]T

∂f

∂u2
=

[

0 0 0 0 −b1 0 0 −b2 0 0 0

]T

In order to solve Eqs. (40)-(42) by a Newton algorithm as per Eq. (37), derivatives of

Eqs. (40)-(42) wrt free variables (x, u, λ) are sought. Collecting equations, the full system
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is:

P =























f

Λu + λT fu

Λx + λT fx























= 0 (43)

Taking derivatives wrt x, u, and λ, the overall Jacobian becomes

J =













fx fu 0

Λux + λfux + λxfu Λuu + λufu + λfuu fu

Λxx + λfxx + λxfx Λxu + λfux + λufx fx













(44)

However, since λ is constant, Λux = Λxu = 0, and fuu = 0, J simplifies to

J =













fx fu 0

λfux Λuu fu

Λxx + λfxx λfxu fx













(45)

Note that fx and fu are matrices, therefore, terms such as fux and fxx are 3rd order tensors. In

order to avoid the use of tensors, consider differentiating the product λT fx. For dimensional

consistency, the product is transposed such that P12m+2:22m+1 = fx
Tλ+ ΛTx . where

fxi,j =
∂fi
∂xj

Thus, we may break the product into columns of fx.

P12m+2:13m+1 = fx
T
:,1:mλ+ ΛTx 1:m

Now, derivatives may be taken, invoking the product rule:

∂P12m+2:13m+1

∂x
=

∂

∂x

(

fx
T
1:m

)

λ+
∂

∂x
ΛTx 1:m

and, for instance ∂/∂x
(

fx
T
:,1

)

is [∂/∂x (∂f/∂y)]T or in other words, [·] may be formed column

wise by taking ∂/∂x of the column ∂f/∂y. Since the product ∂/∂x
(

fx
T
1:m

)

λ should result in

a block 10m + 1 rows by m columns, λ is block diagonalized to prevent summations across

the collocation points. See Appendix C for programming specifics.

Once the full Jacobian is formed, the Newton iteration of Eq. 37 is used. Iterations

proceed until ‖P‖2 < 10−8 or iterations reach 25.
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Figure 1. Prediction Comparison for Low Launch Elevation Trajectory
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IV.D. Gain Scheduled LQR Controller

In order to demonstrate the feasibility of trajectories designed by the Gauss PS method,

a gain scheduled LQR controller was designed and implemented on a non–linear 6 DOF

simulation. The control law takes the form

u = −K(xd − x)

where u is a 2×1 vector of non–dimensional canard lift coefficients in the no roll frame. The

state vector x is defined as

x =
[

y z θ ψ v w q r

]T

and the vector of commanded states xd is found by interpolating the PS optimal controlled

state history using downrange distance as the abscissa. That is, xd is found by a polynomial

interpolation of each state from the optimally designed trajectory collocation points. A

second order polynomial interpolation using Neville’s algorithm7 is implemented using the

waypoint immediately behind the projectile, and the next two downrange. Averaging three

points avoids a small but disruptive transient each time a waypoint is passed.

Likewise, the gain matrix K is found at each collocation point. Each time the control

law is updated, the elements of K are also interpolated using downrange distance as the

abscissa. Each instance of K is found by forming the eight state MPLT model from Eqs. (1)

- (8) and collecting in linear, matrix form. The quantities sθ, cθ, V, p, density, aerodynamic

coefficients, and parameters derived from these are treated as time varying parameters so

that the model may be written

ẋ = Ax+Bu

Where u = [u1 u2]
T and x is as previously defined. Time varying parameters are evaluated

at the altitudes, pitch angles, and mach numbers predicted by the optimal trajectory design.

Then, the feedback gain K may be found at each collocation point by solving the Ricatti

Eq.:

ATG+GA−GBR−1BTG+Q = 0 (46)

and evaluating

K = R−1BTG (47)

Where

Q = diag(
[

75 75 25 25 1 1 1 1

]

)

and R = 7500I are chosen to encourage precise cross range and altitude tracking while
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limiting control effort. Due to the guaranteed stability and robustness properties of LQR, the

projectile should track close to the desired trajectory, making the linear model valid for such

control. Note that guided state vector and LQR gains are computed offline based on initial

conditions and target. The real time calculations for feedback only require interpolation for

the commanded state vector and feedback gain matrix, and a matrix multiplication. Full

state feedback is assumed. While state estimation is required for full implementation, it is

beyond the scope of this work.

V. Results

V.A. Linear Model

Figure (1) compares the predictions of the PLT using the linear implementation described

above (PLT GPS) with similar predictions from PLT using the closed–form solution given

in ref8 (PLT 2011). The solutions labeled ‘6DOF’ and ‘PLT 2011’ are discretized to the

24 equally spaced points plotted as ‘PLT 2011’. The 6DOF points plotted are linearly

interpolated from a Runge Kutta simulation using a time step of 10−4 s. The PLT 2011

result computes the solution at every caliber of travel (4800 points for this case). 6DOF

and PLT 2011 solutions are plotted for points beginning 200 calibers downrange at equal

intervals separated by 200 calibers of downrange travel. 6DOF is plotted as a solid line in

order to allow the reader to visually interpolate and compare the ‘PLT GPS’ solution.

‘PLT GPS’ is the proposed pseudo–spectral numerical solution. The result shown uses

30 LGL collocation points as described above. One disadvantage of the technique is that the

collocation points are dictated by the basis polynomials–the discretization is not valid for

other points. The results in crossrange and yaw show a nearly exact match between all three

solutions. Choosing 30 collocation points allows the pseudo–spectral solution to capture

oscilations in pitch and yaw for this range of projectile travel. The pseudo–spectral solution

diverges from the true solution in pitch and hence altitude at about 800 ft downrange.

The previous PLT solution updates density and aerodynamic coefficients every caliber of

downrange travel, and thus matches the true solution almost exactly. Overall the match for

PLT GPS is quite remarkable considering that the equations are evaluated at only 30 points

as opposed to 4800 for the previous method.

V.B. Non–Linear Model

Figure 2 compares the predictions of PLT, MPLT, and MPLT with varying aero coefficients

with a full non–linear 6DOF simulation. The 6DOF simulation uses Runge Kutta 4 with a

fixed time step of 10−4s over a flight of approximately 40.6 seconds. In order to emphasize
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the power of Gauss PS, only ten collocation points are used for PLT and MPLT. Thus the

PLT is found by solution of an 80x80 linear system. MPLT uses Newton–Raphson iteration

with a Jacobian of dimension nSN × nSN or 100x100 for Figure (2).

Figure 2 illustrates predictions for a shot with V0 = 2178 ft/s, θ0 = 31.51 degrees. The

projectile returns to the ground at approximately 28000 ft. downrange. All methods perform

equally well at predicting altitude during ascent. PLT predictions in altitude fail after actual

apogee, apparently due to the constant velocity assumption. MPLT and MPLT with varying

aero coefficients diverge at apogee with the constant aero prediction remaining below the

truth model, and the varying aero prediction flying below but much closer to the truth model

until the terminal point.

In cross range, the PLT greatly over predicts the projectile swerve due to assuming θ = 0,

and a poor total velocity estimate. MPLT with constant aero slightly under predicts cross

range, and with varying aero appears to be in nearly perfect agreement with the 6DOF.

In pitch, the GPS methods fail to capture fast oscillations at the start of the trajectory

due to coarse discretization. PLT fails to capture the drop in pitch due to inaccuracies in

the gravity term and total velocity estimate. MPLT with constant aero follows the general

trend of pitch but over predicts pitch magnitude at the terminal point. MPLT with varying

aero matches closely to truth model for the entire flight. In yaw, rapid oscillation is much

more prominent early in the 6DOF solution. PLT tends to oscillate wildly about 4.5× 10−3

rad. MPLT constant aero under predicts the final yaw. With varying aero, MPLT slightly

over predicts the final yaw and matches the general trend.

The total velocity estimates are greatly improved by accounting for the high launch

elevation. This is shown by the MPLT and MPLT var aero velocities leveling off and then

increasing after 20000 ft. downrange travel. The PLT velocity prediction continues to

decrease for the full trajectory. PLT accuracy is also hindered by using a constant drag

coefficient for the entire trajectory. MPLT with constant aero follows a similar trend early

in the trajectory due to a constant drag coefficient. MPLT with var aero provides the best

match by accounting for both large changes in pitch and high drag coefficient at transonic

speeds.

Perhaps most remarkable is the contrast in roll rate predictions. Both PLT and MPLT

constant aero fail to capture the general trend which is characterized by the reversal in ṗ

around 5000 ft. downrange. Only MPLT with varying aero correctly matches the general

trend which is caused by interactions between a falling total velocity reducing the effect of

roll damping, and a stronger fin cant constant as Mach number decreases.
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V.C. Optimal Guidance Solution

Figure 3 shows the trajectories found for the Monte Carlo set described in Nash.9 Initial

velocity and roll rate are set at 2177.7 ft/s and -58.928 rad/s respectively. Initial y, z, v, q,

and r are set to zero. As seen in Figs. 3c and d, initial pitch varies from 0.345 to 1.024 rad and

yaw varies from −2.21(10−2) to 2.68(10−2) rad. 30 collocation points are used. R = 50I,

S = diag([249 324 0 · · · 0]), and Q = diag([0 · · · 0 100 100 0 0]). In other words, only

terminal altitude and cross range, enroute controls and angular rates are penalized. Also,

W is modified such that

W = diag(
√
w15

√
w14 . . .

√
w1

√
w30

√
w29 . . .

√
w16)

in order to penalize control effort and angular rates more severely at the initial and terminal

points. Maneuver is encouraged near the middle collocation points instead. The method

finds smooth trajectories for 116 of 125 initial conditions tested as shown in Figure 3. Nine

of the initial conditions resulted in ill conditioning of the Jacobian and the solution was

aborted. Predicted control effort remains below a non–dimensional value of 6 for all tra-

jectories which should map to a deflection angle of 1 rad or less. It is well known that for

a specified target range, there are always two balistic launch solutions–using high and low

launch elevations. The altitude plot shows a definite bifurcation where at a certain launch

elevation, the algorithm selects a much higher path than previous solutions. This seems to

be in keeping with the idea of minimal control effort for an optimal trajectory.

V.D. 6DOF Flight with Optimal Guidance Solution

The gain scheduled LQR controller was designed and implemented on each of the success-

fully designed trajectories. Typical results are shown in Figure 4. Blue lines with triangles

and diamonds indicate the optimal designed trajectory. Red dash-dot represent the path

flown using gain scheduled LQR to command the canards. The projectile tracks the desired

altitude and crossrange very well. Pitch and yaw tend to oscillate around the desired trajec-

tory. These deviations are expected due to the low state penalties chosen on θ, ψ, v, w, q,

and r. Also note the small y axis scaling on the yaw plot. Figure 4b shows the desired and

actual altitude for the highest and lowest launch elevations successfully flown. In addition,

point mass vacuum trajectories intersecting the third colocation point and target are shown

for these two launch conditions. This was done as a basis of comparison with a previous

work where the vacuum trajectory was assumed in order to provide limited state estimates

and integrate the ‘optimal’ trajectory backward in time to produce an instantaneous canard

command.9 The previous work had the advantage of circumventing an outer loop trajectory

deisgn, however, as the plot indicates, the point mass vacuum trajectory bears little resem-
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blance to the optimal. The optimal flies much higher in all cases, and approaches the target

from a steeper angle.

Deflections of canards 1 and 2 for the high launch elevation trajectory are shown in

Figures 4e and 4f respectively. Since these are body frame deflections, the rapid oscillations

are due to the projectile roll cycle. Deflections approach the ±1 rad saturation limit, near

18000 ft downrange where the projectile is near apogee, total velocity is at a minimum, and

maneuver is encouraged by the choice of control penalty weighting.

Dispersion near the target for all 116 trajectories is shown in Figure 5b. The target at

(29000, 0, 0) is depicted as a red circle. Nearly all shots land within 0.2 ft in crossrange,

however some shots fall more than fifteen feet beyond the target. In fact, the highest launch

elevation shots land in a group about three feet beyond the target. As the launch angle is

monotonically decreased, the miss distance monotonically increases beyond the target. The

CEP for this set is 14.29 ft.

VI. Conclusions

A Gauss–Legendre pseudospectral method has been developed to predict uncontrolled

trajectories of symmetric projectiles. The method provides very rapid and accurate predic-

tion by discretizing the trajectory over a small number of points. Pseudospectral collocation

provides for exact representation of system non-linearities and interactions between time

varying quantities including atmospheric density and aerodynamic coefficients. This results

in a method that can accurately represent and predict the dynamics of trajectories including

ones with high launch elevations and transonic velocities.

By also discretizing the cost function for optimal control, the problem of optimal tra-

jectory design is rendered as an algebraic cost function with algebraic equality constraints.

Such a problem is solved by appending equality constraints to the cost function integrand

with Lagrange multipliers. The resulting large set of non–linear algebraic equations is then

numerically solved.

Feasibility of the optimal trajectories was demonstrated by commanding forward canards

through a gain scheduled LQR inner loop. The projectile tracked desired trajectories with

very little error resulting in a large reduction in dispersion at the target.
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Appendix A

The Jacobian of Eq (34) is sparse, thus only the non–zero terms in the Jacobian are

shown in Table 1. Certain constants are differentiated wrt altitude and total velocity. The

scaling of A, C, E, and F are as shown in section IV.
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Where

∂A

∂z
=

∂ρ

∂z

SDCNA
2m

(48)

∂C

∂z
=

∂ρ

∂z

SD2CMA

2IY Y
(49)

∂E

∂z
=

∂ρ

∂z

SD3CMQ

4IY Y
(50)

∂F

∂p
=

D

V

IXX
IY Y

(51)

∂F

∂V
= −IXX

IY Y

D

V 2
p (52)

∂b1
∂z

=
∂ρ

∂z

SD

2m
V (53)

∂b2
∂z

=
∂ρ

∂z

SD

2IY Y
(SLCAN − SLCG)V (54)

∂ρ

∂z
= (0.0000068789)(4.258)(0.0023784722)(1 + 0.0000068789 ∗ z)3.258 (55)

Appendix B

Using time as the independent variable, the MPLT equations after collocation are written

as:

2

tf
∆y − V cθψD − v = 0 = f1 (56)

2

tf
∆z + V sθ − cθw = 0 = f2 (57)

2

tf
∆θ − q = 0 = f3 (58)

2

tf
∆ψ − r

cθ
= 0 = f4 (59)

2

tf
∆v + Av + V r − b1u2 = 0 = f5 (60)

2

tf
∆w + Aw − V q − gcθ + b1u1 = 0 = f6 (61)

2

tf
∆q − Cw − Eq +

IXX
IY Y

pr − b2u1 = 0 = f7 (62)

2

tf
∆r + Cv − IXX

IY Y
pq − Er − b2u2 = 0 = f8 (63)

2

tf
∆V +

πρD2

8m
CX0V

2 + gsθ = 0 = f9 (64)
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2

tf
∆p − πρV 2D3

8IXX
CLDD − πρD4V

16IXX
pCLP = 0 = f10 (65)

where the constants A, C, E, etc. are scaled according to Eqs. (11)-(16).

The Jacobian of Eq. (45) is unpacked here. Non–zero first derivatives fx are shown in

Table 1, although the scaling of Table 1 is that of section IV rather than section I.

Non–zero second derivatives of the f constraints are shown in Table 2 where first deriva-

tives of the constants are rescaled as.

∂A

∂z
=

∂ρ

∂z

SV

2m
CNA (66)

∂A

∂V
=

ρS

2m
CNA (67)

∂C

∂z
=

∂ρ

∂z

SV

2IY Y
CMA (68)

∂C

∂V
=

ρS

2IY Y
CMA (69)

∂E

∂z
=

∂ρ

∂z

SV D2

4IY Y
CMQ (70)

∂E

∂V
=

ρSD2

4IY Y
CMQ (71)

∂b1
∂z

=
∂ρ

∂z

V 2SCAN
2m

(72)

∂b1
∂V

=
ρV SCAN

m
(73)

∂b2
∂z

=
∂ρ

∂z

V 2SCAN
2IY Y

(SLCAN − SLCG) (74)

∂b2
∂V

=
ρV SCAN
IY Y

(SLCAN − SLCG) (75)

(76)

Note that transposed terms are omitted from table 2, since the order of differentiation

does not change the result. For instance: (f7)pr = (f7)rp. Second derivatives of the constants

are written as

∂2A

∂z2
=

∂2ρ

∂z2
SV

2m
CNA (77)

∂2A

∂V ∂z
=

∂ρ

∂z

S

2m
CNA (78)

∂2C

∂z2
=

∂2ρ

∂z2
SV

2IY Y
CMA (79)

∂2C

∂V ∂z
=

∂ρ

∂z

S

2IY Y
CMA (80)
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Table 1. Non–zero Jacobian Matrix Terms
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Table 2. Non–zero 2nd Derivative Terms
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wisθisψiVi (f11)θV = −tf

2
wisθicψi (f1)ψV = −cθ (f11)ψψ = −tf

2
wicθicψiVi

(f11)ψV = −tf
2
wicθisψi (f7)wq = −∂C

∂z
(f6)qV = −1 (f8)qp = −IXX

IY Y

(f5)rV = 1 (f8)rV = −∂E
∂V

(f7)rp =
IXX
IY Y

(f9)V V =
ρπD2

4m
CX0

(f10)V V = −ρπD
3

4IXX
CLDD (f10)V p = − ρπD4

16IXX
CLP

(f5)zz =
∂2A

∂z2
v − ∂2b1

∂z2
u2 (f5)zV =

∂2A

∂V ∂z
v − ∂2b1

∂V ∂z
u2

(f6)zV =
∂2A

∂V ∂z
w +

∂2b1
∂V ∂z

u1 (f7)zz = −∂
2C

∂z2
w − ∂2E

∂z2
q − ∂2b2

∂z2
u1

(f7)zV = − ∂2C

∂V ∂z
w − ∂2E

∂V ∂z
q − ∂2b2

∂V ∂z
u1 (f8)zz =

∂2C

∂z2
v − ∂2E

∂z2
r − ∂2b2

∂z2
u2

(f8)zV =
∂2C

∂V ∂z
v − ∂2E

∂V ∂z
r − ∂2b2

∂V ∂z
u2 (f10)zz = −∂

2ρ

∂z2
πD3

8IXX
CLDDV

2 − ∂2ρ

∂z2
πD4V

16IXX
pCLP

(f10)zV = −∂ρ
∂z

πD3V

4IXX
CLDD − ∂ρ

∂z

πD4

16IXX
pCLP (f4)θθ = −2

s2θ
c3θ
r − r

cθ

(f5)V V =
∂2b1
∂V 2

u2 +
∂2A

∂V 2
v (f6)V V =

∂2b1
∂V 2

u1 +
∂2A

∂V 2
w

(f7)V V = −∂
2E

∂V 2
q − ∂2b2

∂V 2
u1 −

∂2C

∂V 2
w (f8)V V = −∂

2b2
∂V 2

u2 +
∂2C

∂V 2
v − ∂2E

∂V 2
r
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∂2E

∂z2
=

∂2ρ

∂z2
SV D2

4IY Y
CMQ (81)

∂2E

∂V ∂z
=

∂ρ

∂z

SD2

4IY Y
CMQ (82)

∂2b1
∂z2

=
∂2ρ

∂z2
V 2SCAN

2m
(83)

∂2b1
∂V 2

=
ρSCAN
m

(84)

∂2b1
∂V ∂z

=
∂ρ

∂z

V SCAN
m

(85)

∂2b2
∂z2

=
∂2ρ

∂z2
V 2SCAN
2IY Y

(SLCAN − SLCG) (86)

∂2b2
∂V ∂z

=
∂ρ

∂z

V SCAN
IY Y

(SLCAN − SLCG) (87)

∂2b2
∂V 2

=
ρSCAN
IY Y

(SLCAN − SLCG) (88)

∂2ρ

∂z2
= (0.0000068789)2(4.258)(3.258)(0.0023784722)(1 + 0.0000068789 ∗ z)2.258 (89)

Appendix C

As mentioned previously, the term fxx is a third order tensor, which reduces to a matrix

after multiplication by the vector of Lagrange multipliers, λ. To avoid the use of tensors,

consider instead the differentiation of λT fx, that is ∂/∂x(f
T
x λ) or ∂/∂x(f

T
x )λ. For practical

caluclation, take each column of fx and differentiate by x. Take the product of matrix

(fxi)
T
xλ, then concatenate all instances i to form (fx)

T
xλ. That is

fTxxλ =
[

(fy)
T
xλ (fz)

T
xλ · · · (fp)

T
xλ

]

Also note in this case that λmust be expanded into a block diagonal to preserve independence

of the individual instances of Eqs. (56)–(65) for each collocation point. For example (fθ)
T
xλ
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when expanded is



















0 0 (f1)θθ (f1)θψ · · ·
0 0 (f2)θθ 0 · · ·
...

...
...

...

0 0 (f11)θθ (f11)θψ · · ·



















T















































λ1
. . .

λm

λm+1

. . .

λ2m
...

λ10m+1I















































Additionally, sensitivities wrt the final time are treated separately so the term (ftf )
T
xλ+Λtfx

=
[

(fx)
T
tf (f11)

T
xtf

]

λ+
[

0 · · · 0 25Wq 25Wr 0 · · · 0

]T

or

fTxxλ+ Λxx =















fTxx1:10λ+ Λxx1:10

[

(fx)
T
tf (f11)

T
xtf

]

λ+ ΛTxtf

λT







(fx)tf

(f11)xtf






+ Λxtf λT (f)tftf














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