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Batch Calculation of the 
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Or: How to compute almost any derivative using

>>sum(prod([combnk(factors), dfactors.’]))
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Motivation: Brute Force 

Optimization of Control Systems
• Infinite horizon optimal linear feedback controllers are 

determined by minimizing the cost function

• Subject to the constraints defined by the system state 

dynamics 

Motivation continued
• In the case of State Feedback, there is a direct solution from 

the Algebraic Ricatti Equation

• In the case of Output feedback, only iterative solutions are 

available, the most historic involving a pair of Lyapunov 

equations.

• Linear dynamics always have a closed-form solution.

• Idea: substitute the closed-loop system closed-form solution 

into the cost function to transform the optimization into an 

unconstrained optimization.

• The reformulated output feedback problem is termed ‘brute 

force optimization of control systems’
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A Plethora of methods

• The closed-form solution of the state dynamics for any 

time is written in terms of the matrix exponential of At

• Thus for every method of computing the matrix 

exponential, there exists a corresponding brute force 

optimization method

• Investigations to date have used the following methods

– Dyadic decomposition (Burchett, Costello 1997)

– Pade Approximation (Burchett, Costello 2001)

– Sylvester’s expansion (current unpublished work)

Sylvester’s expansion

• Sylvester’s expansion for systems with roots of 

multiplicity mk is written as:

• nk is the combined numerator polynomial from the partial 

fraction expansion of:
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• Using Sylvester Expansion, the quadratic cost function can 

be re-written

• Where

• Φ(ΑΑΑΑ) is the minimum polynomial of A

• The cost function in this form can be integrated closed-

form yielding (this requires integration by parts and 

invoking mathematical induction)

• We would like to invoke gradient based methods with 

analytic derivatives if possible

• This requires computing the derivatives of all factors in the 

equation above (including eigenvalues and residues). 
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Partial Fraction Expansion

• The partial fraction expansion of a system transfer function

• Can be written

• Adding the RHS of the previous eqn by finding a common 

denominator then equating powers of s in the numerators 

right and LHS of the previous eqn, a set of n linear 

equations emerges.  This set of equations can be written in 

a matrix form

ΞΞΞΞa=H

• H is a vector of coefficients from the convolved form of 

the original numerator polynomial
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• ΞΞΞΞ has a distinct pattern in terms of row i and column j.

• In Matlab code, that is

»Xi(i,j)=sum(prod(combnk(-poles([1:j-1, j+1:n]),i-1)));

• For the distinct poles case:
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• For systems with repeated poles, the PFE is:

• By repeating the algebraic process outlined in above, we 

discover that the resulting system of equations ΞΞΞΞa=H has 

the same form as Eq. 4, except that for the terms involving 

repeated poles, the corresponding column of the ΞΞΞΞ matrix 

can be built from the bottom up using Eq. 4, pretending 

that the system is lacking mk-j+1 occurrences of the 

repeated pole.

• Or more specifically:
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Numerical Examples

• First case: distinct poles:

• The PFE is:

• The matrix equation is

• Where

• The residues are a1,2=0.107±0.063j, a3,4=0.274±0.296j
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• Second case: Repeated poles

• The PFE is:

• The matrix equation is

• The resdiues are a1,2=-0.25, a3,4±0.25j

Derivatives of the Residues

• Since we have constructed the residue calculation as a 

linear system
a=ΞΞΞΞ-1H

• The derivatives are found by application of the product 

rule:
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• Then using the matrix inversion fact

• Which is good news indeed--we do not require the inverse 

of the matrix derivative

• We obtain

• For the distinct poles case, the matrix derivative 

follows from the original pattern
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• In Matlab code, if

»rows = combnk(-poles([1:j-1, j+1:n]),k);

»column = fliplr(-dpoles(1:j-1, j+1:n));

• Then
»dXi = sum(prod(combnk(rows(m,:),k-1), column(:),2));
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• More explicitly:
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Numerical Example
• Considering the Frequency domain function

• Assuming the pole derivatives are known as

• The derivative matrix is
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• Where

• The derivative of the H matrix is taken to be

∂H

∂K
= 0 0 0 0 1[ ]

• The resulting residue derivatives are:
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Repeated Poles Example
• Consider again the system

• With pole derivatives

• This leads to an enigma

– when constructing the columns of the ΞΞΞΞ matrix 

corresponding to the repeated pole, we ignored 

one occurrence of the repeated pole

– When constructing the derivative of the ΞΞΞΞ matirx, 

which pole derivative to I ignore?

• I can show what the numbers should be, from 

finite differencing, but I cannot determine the 

correct pattern...
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• The derivative of the ΞΞΞΞ matrix is

• The residue sensitivities are

Conclusions

• Batch calculation seems to be a viable 

method for finding derivatives of the 

residues

• The important case of systems with 

repeated poles needs further investigation

• Help ?!


