Or: How to compute almost any derivative using
>>sum(prod([combnk(factors), dfactors.']))

Bradley T. Burchett

ROSEFHULMAN

Outline

- Motivation - Brute force Control System Optimization
- Sylvester's Expansion
- Partial Fraction Expansion - Batch Method
- Numerical Examples
- Derivatives of the Residues
- Numerical Examples
- Conclusions

Motivation: Brute Force Optimization of Control Systems

- Infinite horizon optimal linear feedback controllers are determined by minimizing the cost function

$$
\tilde{J}=\int_{0}^{\infty}\left(\mathbf{x}^{T} \tilde{\mathbf{Q}} \mathbf{x}+\mathbf{u}^{T} \tilde{\mathbf{R}} \mathbf{u}\right) d t
$$

- Subject to the constraints defined by the system state dynamics

$$
\begin{aligned}
& \dot{\mathbf{x}}=\tilde{\mathbf{A}} \mathbf{x}+\tilde{\mathbf{B}} \mathbf{u} \\
& \mathbf{y}=\tilde{\mathbf{C}} \mathbf{x}+\tilde{\mathbf{D}} \mathbf{u}
\end{aligned}
$$

ROSE-HULMAN

Motivation continued

- In the case of State Feedback, there is a direct solution from the Algebraic Ricatti Equation
- In the case of Output feedback, only iterative solutions are available, the most historic involving a pair of Lyapunov equations.
- Linear dynamics always have a closed-form solution.
- Idea: substitute the closed-loop system closed-form solution into the cost function to transform the optimization into an unconstrained optimization.
- The reformulated output feedback problem is termed 'brute force optimization of control systems'

A Plethora of methods

- The closed-form solution of the state dynamics for any time is written in terms of the matrix exponential of $\mathbf{A} t$
- Thus for every method of computing the matrix exponential, there exists a corresponding brute force optimization method
- Investigations to date have used the following methods
- Dyadic decomposition (Burchett, Costello 1997)
- Pade Approximation (Burchett, Costello 2001)
- Sylvester's expansion (current unpublished work)

POSE-HULMAN

Sylvester's expansion

- Sylvester's expansion for systems with roots of multiplicity m_{k} is written as:

$$
e^{\mathbf{A} t}=\sum_{k=1}^{\sigma} \sum_{l=0}^{m_{k}-1} t^{l} e^{\lambda_{k} t} \frac{1}{l!}\left(\mathbf{A}-\lambda_{k} \mathbf{I}\right)^{l} \prod_{\substack{i=1 \\ i \neq k}}^{\sigma}\left(\mathbf{A}-\lambda_{i} \mathbf{I}\right)^{m_{i}} n_{k}(\mathbf{A})
$$

- n_{k} is the combined numerator polynomial from the partial fraction expansion of:

$$
\frac{1}{\Phi(\lambda)}=\frac{n_{k}}{\left(\lambda-\lambda_{k}\right)^{m_{k}}}+\frac{n_{k+1}}{\left(\lambda-\lambda_{k+1}\right)^{m_{k+1}}}+\ldots
$$

- Using Sylvester Expansion, the quadratic cost function can be re-written

$$
\begin{array}{r}
\tilde{J}=\int_{0}^{\infty} \sum_{a=1}^{\sigma} \sum_{p=1}^{m_{a}} \mathbf{E}_{a p}^{H} \frac{1}{(p-1)!}\left(\mathbf{A}^{H}-\lambda_{a}^{H} \mathbf{I}\right)^{p-1} t^{p-1} e^{\lambda_{a}^{H} t} \mathbf{Q} \\
\bullet \sum_{b=1}^{\sigma} \sum_{q=1}^{n_{b}} t^{(q-1)} e^{\lambda_{b} t} \frac{1}{(q-1)!}\left(\mathbf{A}-\lambda_{b} \mathbf{I}\right)^{(q-1)} \mathbf{E}_{b q} d t
\end{array}
$$

- Where

$$
\mathbf{E}_{k}=\frac{\Phi(\mathbf{A}) n_{k}(\mathbf{A})}{\left(\lambda-\lambda_{k}\right)^{m_{k}}}
$$

- $\Phi(\mathbf{A})$ is the minimum polynomial of \mathbf{A}

POSE-HULMAN

- The cost function in this form can be integrated closedform yielding (this requires integration by parts and invoking mathematical induction)

$$
\begin{array}{r}
\tilde{J}=\sum_{a=1}^{\sigma} \sum_{b=1}^{\sigma} \sum_{p=1}^{m_{a}} \sum_{q=1}^{n_{b}} \frac{(-1)^{p+q-1}(p+q-2)!}{\left(\lambda_{a}^{\dagger}+\lambda_{b}\right)^{p+q-1}(p-1)!(q-1)!} \\
\bullet \mathbf{E}_{a p}^{H}\left(\mathbf{A}^{H}-\lambda_{a}^{H} \mathbf{I}\right)^{(p-1)} \mathbf{Q}\left(\mathbf{A}-\lambda_{b} \mathbf{I}\right)^{(q-1)} \mathbf{E}_{b q}
\end{array}
$$

- We would like to invoke gradient based methods with analytic derivatives if possible
- This requires computing the derivatives of all factors in the equation above (including eigenvalues and residues).

ROSEHULMAN

Partial Fraction Expansion

- The partial fraction expansion of a system transfer function

$$
\begin{gathered}
F(s)=\frac{B(s)}{A(s)} \\
\frac{B(s)}{A(s)}=\frac{K\left(s+z_{1}\right)\left(s+z_{2}\right) \cdots\left(s+z_{m}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right) \cdots\left(s+p_{n}\right)}, \text { for } m<n
\end{gathered}
$$

- Can be written

$$
\frac{B(s)}{A(s)}=\frac{a_{1}}{\left(s+p_{1}\right)}+\frac{a_{2}}{\left(s+p_{2}\right)}+\cdots+\frac{a_{n}}{\left(s+p_{n}\right)}
$$

ROSE-HULMAN

- Adding the RHS of the previous eqn by finding a common denominator then equating powers of s in the numerators right and LHS of the previous eqn, a set of n linear equations emerges. This set of equations can be written in a matrix form

$\Xi \mathrm{a}=\mathrm{H}$

- \mathbf{H} is a vector of coefficients from the convolved form of the original numerator polynomial

$$
\begin{gathered}
B(s)=\eta_{1} s^{n-1}+\eta_{2} s^{n-2}+\cdots+\eta_{n} \\
\mathbf{H}=\left[\begin{array}{llll}
\eta_{1} & \eta_{2} & \cdots & \eta_{n}
\end{array}\right]^{T}
\end{gathered}
$$

- $\boldsymbol{\Xi}$ has a distinct pattern in terms of row i and column j.

$$
\boldsymbol{\Xi}_{i, j}=\sum_{\substack{k, l \\
k, l=\left(\begin{array}{c}
n-1 \\
i=1 \\
k, l \neq j \\
k
\end{array}\right.}}\left(-p_{k}\right)\left(-p_{l}\right) \cdots
$$

- In Matlab code, that is
»Xi(i,j)=sum(prod(combnk(-poles([1:j-1, j+1:n]),i-1)));

TOSE-HULMAN

- For systems with repeated poles, the PFE is:

$$
\begin{align*}
\frac{B(s)}{A(s)} & =\frac{a_{1}}{\left(s+p_{1}\right)^{m_{k}}}+\frac{a_{2}}{\left(s+p_{1}\right)^{m_{k}-1}}+\cdots+\frac{a_{m_{k}}}{\left(s+p_{1}\right)} \\
& +\cdots+\frac{a_{m_{k}+1}}{\left(s+p_{2}\right)}+\cdots \frac{a_{n}}{\left(s+p_{n}\right)} \tag{5}
\end{align*}
$$

- By repeating the algebraic process outlined in above, we discover that the resulting system of equations $\boldsymbol{\Xi} \mathbf{a}=\mathbf{H}$ has the same form as Eq. 4, except that for the terms involving repeated poles, the corresponding column of the Ξ matrix can be built from the bottom up using Eq. 4, pretending that the system is lacking $m_{k}-j+1$ occurrences of the repeated pole.

Numerical Examples

- First case: distinct poles:

$$
\frac{0.762 s^{3}+0.457 s^{2}+0.019 s+0.821}{s^{4}+0.243 s^{3}+0.639 s^{2}+0.512 s+0.938}
$$

- The PFE is:

$$
\begin{aligned}
& =\frac{a_{1}}{(s-0.515-0.911 j)}+\frac{a_{2}}{(s-0.515+0.911 j)} \\
& +\frac{a_{3}}{(s+0.637-0.672 j)}+\frac{a_{4}}{(s+0.637+0.672 j)}
\end{aligned}
$$

TOSE-HULMAN

- The matrix equation is

$$
\left[\begin{array}{llll}
\xi_{1} & \xi_{1}^{\dagger} & \xi_{2} & \xi_{2}^{\dagger}
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\}=\left\{\begin{array}{l}
0.762 \\
0.457 \\
0.019 \\
0.821
\end{array}\right\}
$$

- Where

$$
\xi_{1}=\left[\begin{array}{lll}
1 & .758+.911 j & .2+1.16 j-.441+.78 j
\end{array}\right]^{T}
$$

$$
\xi_{2}=\left[\begin{array}{lll}
1 & -.394+.672 j & -.439-.692 j
\end{array} .697+.735 j\right]^{T}
$$

- The residues are $a_{1,2}=0.107 \pm 0.063 j, a_{3,4}=0.274 \pm 0.296 j$
- Second case: Repeated poles

$$
\frac{1}{s^{4}+4 s^{3}+8 s^{2}+8 s+4}
$$

- The PFE is:

$$
=\frac{a_{1}}{(s+1+j)^{2}}+\frac{a_{2}}{(s+1-j)^{2}}+\frac{a_{3}}{(s+1+j)}+\frac{a_{4}}{(s+1-j)}
$$

- The matrix equation is

$$
\left[\begin{array}{cccc}
0 & 0 & 1 & 1 \\
1 & 1 & 3-j & 3+j \\
2-2 j & 2+2 j & -4-2 j & -4+2 j \\
-2 j & 2 j & 2-2 j & 2+2 j
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right\}
$$

- The resdiues are $a_{1,2}=-0.25, a_{3,4} \pm 0.25 j$

TOSTEHULMAN

Derivatives of the Residues

- Since we have constructed the residue calculation as a linear system

$$
\mathbf{a}=\boldsymbol{\Xi}^{-1} \mathbf{H}
$$

- The derivatives are found by application of the product rule:

$$
\frac{\partial \mathbf{a}}{\partial \mathbf{K}}=\frac{\partial \boldsymbol{\Xi}^{-1}}{\partial \mathbf{K}} \mathbf{H}+\boldsymbol{\Xi}^{-1} \frac{\partial \mathbf{H}}{\partial \mathbf{K}}
$$

- Then using the matrix inversion fact

$$
\frac{\partial \boldsymbol{\Xi}^{-1}}{\partial \mathbf{K}}=-\boldsymbol{\Xi}^{-1} \frac{\partial \boldsymbol{\Xi}}{\partial \mathbf{K}} \boldsymbol{\Xi}^{-1}
$$

- We obtain

$$
\frac{\partial \mathbf{a}}{\partial \mathbf{K}}=-\boldsymbol{\Xi}^{-1} \frac{\partial \boldsymbol{\Xi}}{\partial \mathbf{K}} \boldsymbol{\Xi}^{-1} \mathbf{H}+\boldsymbol{\Xi}^{-1} \frac{\partial \mathbf{H}}{\partial \mathbf{K}}
$$

- Which is good news indeed--we do not require the inverse of the matrix derivative

ROSE-HULMAN

- For the distinct poles case, the matrix derivative follows from the original pattern
- In Matlab code, if

```
>rows = combnk(-poles([1:j-1, j+1:n]),k);
>column = fliplr(-dpoles(1:j-1, j+1:n));
```

- Then
»dXi $=\operatorname{sum}(\operatorname{prod}(\operatorname{combnk}(\operatorname{rows}(m,:), k-1), \operatorname{column}(:), 2))$;
- More explicitly:

TOSE-HULMAN

Numerical Example

- Considering the Frequency domain function

$$
\frac{.406 s^{4}+.936 s^{3}+.917 s^{2}+0.41 s+0.894}{s^{5}+1.38 s^{4}+1.78 s^{3}+2.073 s^{2}+1.66 s+.396}
$$

- Assuming the pole derivatives are known as

$$
\left\{\begin{array}{c}
\partial p_{1,2} / \partial K \\
\partial p_{3,4} / \partial K \\
\partial p_{5} / \partial K
\end{array}\right\}=\left\{\begin{array}{c}
.0765 \mp 0.139 i \\
.657 \mp .108 i \\
-1.466
\end{array}\right\}
$$

- The derivative matrix is

$$
\frac{\partial \mathbf{\Xi}}{\partial \mathbf{K}}=\left[\begin{array}{lllll}
\xi_{1} & \xi_{1}^{\dagger} & \xi_{2} & \xi_{2}^{\dagger} & \xi_{3}
\end{array}\right]
$$

- The resulting residue derivatives are:

$$
\left\{\begin{array}{c}
\frac{\partial a_{1,2}}{\partial \mathrm{~K}} \\
\frac{\partial a_{3,4}}{\partial K} \\
\frac{\partial \sigma_{5}}{\partial \mathrm{~K}}
\end{array}\right\}=\left\{\begin{array}{c}
-0.1077 \pm 0.1635 i \\
-2.5461 \mp 0.9141 i \\
5.3075
\end{array}\right\}
$$

Repeated Poles Example

- Consider again the system

$$
\frac{1}{s^{4}+4 s^{3}+8 s^{2}+8 s+4}
$$

- With pole derivatives

$$
\left\{\begin{array}{l}
\partial p_{1,2} / \partial K \\
\partial p_{3,4} / \partial K
\end{array}\right\}=\left\{\begin{array}{c}
71.96 \pm 173.59 i \\
-71.96 \mp 173.84 i
\end{array}\right\}
$$

ROSE-HULMAN

- This leads to an enigma
- when constructing the columns of the Ξ matrix corresponding to the repeated pole, we ignored one occurrence of the repeated pole
- When constructing the derivative of the Ξ matirx, which pole derivative to I ignore?
- I can show what the numbers should be, from finite differencing, but I cannot determine the correct pattern...
- The derivative of the Ξ matrix is

$$
\frac{\partial \Xi}{\partial \mathbf{K}}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & i / 8 & 0 & -i / 8 \\
i / 4 & 0 & -i / 4 & -1 / 4-i / 4 \\
1 / 2 & 1 / 4+i / 2 & 1 / 4-i / 4 & -1 / 4-i / 2
\end{array}\right]
$$

- The residue sensitivities are

$$
\left\{\begin{array}{c}
\frac{\partial a_{1}}{\partial K} \\
\frac{\partial a_{2}}{\partial K} \\
\frac{\partial a_{3}}{\partial K} \\
\frac{\partial a_{4}}{\partial \mathbf{K}}
\end{array}\right\}=\left\{\begin{array}{c}
-3.7875-39.7354 i \\
-39.7042+0.125 i \\
3.6625-39.6729 i \\
39.7042-0.125 i
\end{array}\right\}
$$

ROSE-HULMAN

Conclusions

- Batch calculation seems to be a viable method for finding derivatives of the residues
- The important case of systems with repeated poles needs further investigation
- Help ?!

