

ROSEHULMAN
 INSTITUTE OF TECHNOLOGY

Three Recent Advances in Optimal Control of Fin Stabilized Surface to Surface Missiles

Technique \#1 - Predictive Optimal Pulsejet Control for Symmetric Projectiles

Motivation

Previous efforts $(2001,2008)$ required a prediction of the uncontrolled, and controlled trajectories.

Pulsing changes angular rates leaving other states alone. (impulse model)

Interim work (2011) found trajectory sensitivities to changes in initial angular rates by finite differencing.

Current method uses closed-form sensitivities (2012) which are computed six times faster than finite differences.

Knowing the predicted impact point and sensitivity with respect to changes in initial angular rates, correction times are determined by two methods:

Perturbed trajectories
From unit $\delta v, \delta w, \delta q, \delta r$
Direction of correction In target plane $\{\delta y, \delta z, \delta \theta, \delta y\}$

$$
\begin{aligned}
& \text { ROSTHUNMAN } \\
& \text { institute of TECHNOLOGY }
\end{aligned}
$$

Target plane direction is mapped to angular rate correction vector through a Jacobian matrix. This in turn maps to roll angle at which pulse jet should be fired

$$
\begin{aligned}
& \text { ROST HULMAN } \\
& \text { instivute technotocr }
\end{aligned}
$$

Linear Theory Model

$$
\begin{array}{lr}
\left\{\begin{array}{c}
y^{\prime} \\
z^{\prime} \\
\theta^{\prime} \\
\psi^{\prime}
\end{array}\right\}=\boldsymbol{\Phi}\left\{\begin{array}{c}
y \\
z \\
\theta \\
\psi
\end{array}\right\}+\frac{D}{V} \mathbf{I}\left\{\begin{array}{c}
v \\
w \\
q \\
r
\end{array}\right\} & \boldsymbol{\Phi}=\left[\begin{array}{cccc}
0 & 0 & 0 & D \\
0 & 0 & -D & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\left\{\begin{array}{c}
v^{\prime} \\
w^{\prime} \\
q^{\prime} \\
r^{\prime}
\end{array}\right\}=\boldsymbol{\Xi}\left\{\begin{array}{c}
v \\
w \\
q \\
r
\end{array}\right\}+\left\{\begin{array}{l}
0 \\
G \\
0 \\
0
\end{array}\right\} g & \boldsymbol{\Xi}=\left[\begin{array}{rrrr}
-\mathbf{\Xi}_{1} & 0 & 0 & -D \\
0 & -\mathbf{\Xi}_{1} & D & 0 \\
\mathbf{\Xi}_{2} & \mathbf{\Xi}_{3} & \mathbf{\Xi}_{4} & -\mathbf{\Xi}_{5} \\
-\mathbf{\Xi}_{3} & \mathbf{\Xi}_{2} & \mathbf{\Xi}_{5} & \mathbf{\Xi}_{4}
\end{array}\right]
\end{array}
$$

Ξ contains epicyclic modes
Ξ is invertible
Ξ_{2} is the Magnus (=0 in this study)

Linear Theory Solution

Velocity state total solution is written in matrix exponential form for ease of differentiation.

$$
\eta=e^{\boldsymbol{\Xi} s} \chi+\eta_{p}
$$

Position state solution not so easily found since Φ matrix singular.

$$
\mathbf{x}^{\prime}(s)=\boldsymbol{\Phi} \mathbf{x}(s)+\boldsymbol{\Gamma}(s)
$$

Instead, treat as linear forced ODE and use the solution:

$$
\mathbf{x}(s)=e^{\boldsymbol{\Phi} s} \mathbf{x}_{0}+e^{\boldsymbol{\Phi} s} \int_{0}^{s} e^{-\boldsymbol{\Phi} \tau} \boldsymbol{\Gamma}(\tau) d \tau
$$

Linear Theory Solution

The integral can be handled by a combined matrix exponential, if:

$$
\Psi=\left[\begin{array}{cc}
\Phi & \Gamma \\
0 & R
\end{array}\right] \quad \text { and } \quad e^{\Psi s}=\left[\begin{array}{cc}
\Omega_{1} & \Delta_{1} \\
0 & \Omega_{2}
\end{array}\right]
$$

Then:

$$
\begin{aligned}
& \Omega_{1}=e^{\boldsymbol{\Phi} s} \\
& \Delta_{1}=\Omega_{1} \int_{0}^{s} e^{-\boldsymbol{\Phi} \tau} \boldsymbol{\Gamma} e^{R \tau} d \tau
\end{aligned}
$$

ROSSEHUMAAN

Derivatives of the closed form solution are now found more easily.

$$
\begin{gathered}
\frac{\partial \xi}{\partial \vartheta_{i}}=\Omega_{1} \frac{\partial \xi_{0}}{\partial \vartheta_{i}}+\frac{\partial \Delta_{1}}{\partial \vartheta_{i}} \\
\frac{\partial \Delta_{1}}{\partial \vartheta_{i}}=\int_{0}^{s} e^{-\boldsymbol{\Phi} \tau} \frac{\partial \boldsymbol{\Gamma}}{\partial \vartheta_{i}} d \tau
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial}{\partial \vartheta_{i}} \boldsymbol{\Psi}=\left[\begin{array}{cc}
\boldsymbol{\Phi} & \frac{\partial}{\partial \vartheta_{i}} \boldsymbol{\Gamma} \\
\mathbf{0} & 0
\end{array}\right] \\
\exp \left(s \frac{\partial}{\partial \vartheta_{i}} \boldsymbol{\Psi}\right)=\left[\begin{array}{cc}
\Omega_{3} & \frac{\partial \Delta_{1}}{\partial \vartheta_{i}} \\
0 & \Omega_{4}
\end{array}\right]
\end{gathered}
$$

Derivatives of initial angular rates at current downrange distance:

$$
\begin{aligned}
\left.\frac{\partial \eta}{\partial v_{0}}\right|_{s=0} & =e^{\Xi}\left\{\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right\}^{T} \\
\left.\frac{\partial \eta}{\partial w_{0}}\right|_{s=0} & =e^{\Xi}\left\{\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right\}^{T} \\
\left.\frac{\partial \eta}{\partial q_{0}}\right|_{s=0} & =e^{\Xi}\left\{\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right\}^{T} \\
\left.\frac{\partial \eta}{\partial r_{0}}\right|_{s=0} & =e^{\Xi}\left\{\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right\}^{T}
\end{aligned}
$$

This influence must be propagated along the trajectory:

$$
\begin{aligned}
\left.\frac{\partial \eta}{\partial v_{0}}\right|_{s=k} & =\left.e^{\Xi} \frac{\partial \eta}{\partial v_{0}}\right|_{s=k-1} \\
\left.\frac{\partial \eta}{\partial w_{0}}\right|_{s=k} & =\left.e^{\Xi} \frac{\partial \eta}{\partial w_{0}}\right|_{s=k-1} \\
\left.\frac{\partial \eta}{\partial q_{0}}\right|_{s=k} & =\left.e^{\Xi} \frac{\partial \eta}{\partial q_{0}}\right|_{s=k-1} \\
\left.\frac{\partial \eta}{\partial r_{0}}\right|_{s=k} & =\left.e^{\Xi} \frac{\partial \eta}{\partial r_{0}}\right|_{s=k-1}
\end{aligned}
$$

Taylor Series Model Predictive Controller

$$
\left\{\begin{array}{c}
y_{t} \\
z_{t} \\
\theta_{t} \\
\psi_{t}
\end{array}\right\}=\left\{\begin{array}{l}
\hat{y} \\
\hat{z} \\
\hat{\theta} \\
\hat{\psi}
\end{array}\right\}+\left[\begin{array}{llll}
\frac{\partial y}{\partial v_{0}} & \frac{\partial y}{\partial w_{0}} & \frac{\partial y}{\partial q_{0}} & \frac{\partial y}{\partial o_{0}} \\
\frac{\partial z}{\partial v_{0}} & \frac{\partial z}{\partial v_{0}} & \frac{\partial z}{\partial q_{0}} & \frac{\partial z}{\partial v_{0}} \\
\frac{\partial \theta}{\partial v_{0}} & \frac{\partial \theta}{\partial w_{0}} & \frac{\partial \theta}{\partial q_{0}} & \frac{\partial \theta}{\partial r_{0}} \\
\frac{\partial \psi}{\partial v_{0}} & \frac{\partial \psi}{\partial w_{0}} & \frac{\partial \psi \psi}{\partial q_{0}} & \frac{\partial \psi}{\partial r_{0}}
\end{array}\right]\left\{\begin{array}{c}
\delta v_{0} \\
\delta w_{0} \\
\delta q_{0} \\
\delta r_{0}
\end{array}\right\}
$$

Since pitch and yaw are unconstrained at the target, replace the last two rows with:

$$
\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}=\left[\begin{array}{cccc}
m & 0 & 0 & -\frac{I_{y y}}{R_{I x}} \\
0 & m & \frac{I_{y y}}{R_{I x}} & 0
\end{array}\right]\left\{\begin{array}{l}
\delta v_{0} \\
\delta w_{0} \\
\delta q_{0} \\
\delta r_{0}
\end{array}\right\}
$$

Euler-Lagrange Optimal Control

$$
\begin{gathered}
\left\{\begin{array}{l}
y(1) \\
z(1)
\end{array}\right\}=\left\{\begin{array}{c}
y(0) \\
z(0)
\end{array}\right\}+\left[\begin{array}{llll}
\frac{\partial y}{\partial v_{0}} & \frac{\partial y}{\partial w_{0}} & \frac{\partial y}{\partial q_{0}} & \frac{\partial y}{\partial r_{0}} \\
\frac{\partial z}{\partial v_{0}} & \frac{\partial z}{\partial w_{0}} & \frac{\partial z}{\partial q_{0}} & \frac{\partial z}{\partial r_{0}}
\end{array}\right]\left\{\begin{array}{c}
\delta v_{0} \\
\delta w_{0} \\
\delta q_{0} \\
\delta r_{0}
\end{array}\right\} \\
\mathbf{u}=-\mathbf{R}^{-1} \mathbf{B}^{T} \lambda \\
\\
\left\{\begin{array}{c}
\delta v_{0} \\
\delta w_{0} \\
\delta q_{0} \\
\delta r_{0}
\end{array}\right\}=-\frac{1}{\gamma}\left[\begin{array}{cc}
\frac{\partial y}{\partial v_{0}} & \frac{\partial z}{\partial v_{0}} \\
\frac{\partial y}{\partial w_{0}} & \frac{\partial z}{\partial w_{0}} \\
\frac{\partial y}{\partial q_{0}} & \frac{\partial z}{\partial q_{0}} \\
\frac{\partial y}{\partial r_{0}} & \frac{\partial z}{\partial r_{0}}
\end{array}\right]\left\{\begin{array}{l}
y(1) \\
z(1)
\end{array}\right\}
\end{gathered}
$$

Uncontrolled Dispersion

Controlled Dispersions

ROS institute of TECHNOLOOY

Technique \#2 - Euler-Lagrange Optimal Control for Direct Fire

Nine State Linear Plant Model

$$
\left\{\begin{array}{c}
\dot{\xi} \\
\dot{\eta} \\
\ddot{w}
\end{array}\right\}=\left[\begin{array}{ccc}
\boldsymbol{\Phi} & \boldsymbol{\Gamma} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Xi} & \boldsymbol{\Lambda} \\
\mathbf{0} & \mathbf{0} & 0
\end{array}\right]\left\{\begin{array}{c}
\xi \\
\eta \\
\dot{w}
\end{array}\right\}+\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{b} \\
\mathbf{0}
\end{array}\right]\left\{\begin{array}{c}
C_{Z 0} \\
C_{Y 0}
\end{array}\right\}
$$

$$
\dot{\mathrm{x}}=\mathbf{A x}+\mathbf{B u}
$$

$$
\xi=\left[\begin{array}{llll}
y & z & \theta & \psi
\end{array}\right]^{T}, \eta=\left[\begin{array}{llll}
v & w & q & r
\end{array}\right]^{T}, \boldsymbol{\Lambda}=\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right]^{T}, \boldsymbol{\Gamma}=\frac{D}{V} \mathbf{I}
$$

$$
\boldsymbol{\Phi}=\left[\begin{array}{cccc}
0 & 0 & 0 & D \\
0 & 0 & -D & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \boldsymbol{\Xi}=\left[\begin{array}{rrrr}
-\boldsymbol{\Xi}_{1} & 0 & 0 & -D \\
0 & -\boldsymbol{\Xi}_{1} & D & 0 \\
\boldsymbol{\Xi}_{2} & \boldsymbol{\Xi}_{3} & \boldsymbol{\Xi}_{4} & -\boldsymbol{\Xi}_{5} \\
-\boldsymbol{\Xi}_{3} & \boldsymbol{\Xi}_{2} & \boldsymbol{\Xi}_{5} & \boldsymbol{\Xi}_{4}
\end{array}\right]
$$

ROSEHUMMAN

LTI Finite Horizon Optimal Control

System matrices treated as constants such that $\mathbf{A}(p, V)=\mathbf{A}$, etc.:
Form the finite horizon cost function:

$$
J=\frac{1}{2} \mathbf{x}^{T}\left(s_{t}\right) \mathbf{P} \mathbf{x}\left(s_{t}\right)+\int_{s_{i}}^{s_{t}} \frac{1}{2} \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{u}^{T} \mathbf{R} \mathbf{u} d s
$$

Since $Q \geq 0$, choose $Q=0$, then define the Hamiltonian:

$$
\tilde{H}=\frac{1}{2} \mathbf{u}^{T} \mathbf{R} \mathbf{u}+\lambda^{T}(\mathbf{A} \mathbf{x}+\mathbf{B u})
$$

LTI Finite Horizon Optimal Control, Cont'd

Taking variations yields the conditions for optimality:

$$
\begin{aligned}
\dot{\lambda}^{T} & =-\frac{\partial \tilde{H}}{\partial \mathbf{x}}=-\lambda^{T} \mathbf{A} \\
\frac{\partial \tilde{H}}{\partial \mathbf{u}} & =\mathbf{0} \rightarrow \mathbf{0}=\mathbf{u}^{T} \mathbf{R}+\lambda^{T} \mathbf{B}
\end{aligned}
$$

Thus the control law is

$$
\mathbf{u}=-\mathbf{R}^{-1} \mathbf{B}^{T} \lambda
$$

LTI Finite Horizon Optimal Control, Cont'd

State and co-state ODEs are collected into a single matrix equation:

$$
\left\{\begin{array}{c}
\dot{\mathbf{x}} \\
\dot{\lambda}
\end{array}\right\}=\left[\begin{array}{cc}
\mathbf{A} & -\mathbf{B} \mathbf{R}^{-1} \mathbf{B}^{T} \\
\mathbf{0} & -\mathbf{A}^{T}
\end{array}\right]\left\{\begin{array}{l}
\mathbf{x} \\
\lambda
\end{array}\right\}
$$

Which can be solved using state transition matrices such that:

$$
\left\{\begin{array}{c}
\mathbf{x}(s) \\
\lambda(s)
\end{array}\right\}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]\left\{\begin{array}{l}
\mathbf{x}\left(s_{t}\right) \\
\mathbf{P x}\left(s_{t}\right)
\end{array}\right\}
$$

LTI Optimal Control cont'd

Such that the current co-state is given by:

$$
\lambda(s)=\left[\boldsymbol{\Sigma}_{21}+\boldsymbol{\Sigma}_{22} \mathbf{P}\right] \bullet\left[\boldsymbol{\Sigma}_{11}+\boldsymbol{\Sigma}_{12} \mathbf{P}\right]^{-1} \mathbf{x}(s)
$$

And the transition matrices are given by the full 18×18 matrix exponential:

$$
\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]=\exp \left[\begin{array}{cc}
\mathbf{A} \sigma & -\mathbf{B} \mathbf{R}^{-1} \mathbf{B}^{T} \sigma \\
\mathbf{0} & -\mathbf{A}^{T} \sigma
\end{array}\right]
$$

ROSEHUMAN

Dispersions, uncontrolled, controlled

ROSEHUMAN

Dispersion, with range correction

Controlled, with range correction

ROS Z institute of technotoor

Technique \#3 - Euler-Lagrange Optimal Control for Indirect Fire

Modified Projectile Linear Theory

 Equations in Matrix Form$$
\begin{aligned}
& \left\{\begin{array}{c}
\dot{\boldsymbol{\xi}} \\
\dot{\boldsymbol{\eta}} \\
\ddot{W}
\end{array}\right\}=\left[\begin{array}{ccc}
\boldsymbol{\Phi} & \boldsymbol{\Gamma} & \boldsymbol{\Sigma} \\
0 & \Xi & \boldsymbol{\Lambda} \\
0 & 0 & 0
\end{array}\right]\left\{\begin{array}{c}
\boldsymbol{\xi} \\
\boldsymbol{\eta} \\
\dot{W}
\end{array}\right\}+\left[\begin{array}{c}
0 \\
\mathbf{b} \\
0
\end{array}\right]\left\{\begin{array}{c}
C_{Z 0} \\
C_{Y 0}
\end{array}\right\} \\
& \boldsymbol{\Sigma}=D s_{\bar{\theta}}\left[\begin{array}{llll}
0 & -1 & 0 & 0
\end{array}\right]^{T}, \boldsymbol{\Lambda}=\frac{D g}{V} c_{\bar{\theta}}\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right]^{T} \\
& \boldsymbol{\eta}=\left[\begin{array}{llll}
v & w & q & r
\end{array}\right]^{T} \quad \boldsymbol{\xi}=\left[\begin{array}{llll}
y & z & \delta_{\theta} & \psi
\end{array}\right]^{T}
\end{aligned}
$$

Pitch angle, roll rate, and total velocity are treated as parameters rather than states
Pitch angle perturbation is added to the state vector to preserve controllability
Angle of attack rate \dot{w} is uncontrollable but stabiliziable state s.t. gravity is included in homogeneous solution

point mass vacuum trajectory is contrived to intersect early point in actual trajectory, and taroet

Itme varying parameters ($V, p, \sin \theta, \cos \theta$)

 are predicted from point mass vacuumtraiectory,

$$
\begin{gathered}
V(s+h)=\sqrt{\left(V^{2}(s)+\frac{b_{v}}{a_{v}}\right) e^{-2 a_{v} h}-\frac{b_{v}}{a_{v}}} \\
p(s+h)=c_{p e 1} e^{c_{p e 2} h}-c_{p 0} \\
c_{\theta_{k}}=\frac{d x}{d s_{k}} \quad s_{\theta_{k}}=\frac{d z_{k}}{d s_{k}} \\
V(s+h)=\sqrt{\left(V^{2}(s)+\frac{b_{v}}{a_{v}}\right) e^{-2 a_{v} h-\frac{b_{v}}{a_{v}}}}
\end{gathered}
$$

Euler-Lagrange Optimal solution for Time Varying Piecewise Linear systems

$$
J=\frac{1}{2} \mathbf{x}^{T}\left(s_{t}\right) \mathbf{P} \mathbf{x}\left(s_{t}\right)+\int_{s_{i}}^{s_{t}} \frac{1}{2} \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{u}^{T} \mathbf{R} \mathbf{u} d s
$$

The control can be found from:

$$
\mathbf{u}(s)=-\mathbf{R}^{-1} \mathbf{B}^{T}(s) \mathbf{N}(s) \mathbf{x}(s)
$$

$\mathbf{N}(s)$ is the solution to the time varying Riccati eqn:

$$
\dot{\mathbf{N}}(s)=-\mathbf{N}(s) \mathbf{A}(s)-\mathbf{A}^{T}(s) \mathbf{N}(s)+\mathbf{N}(s) \mathbf{B}(s) \mathbf{R}^{-1} \mathbf{B}^{T}(s) \mathbf{N}(s)-\mathbf{Q}
$$

Decompose the Riccati Eqn. into two DEs:

$$
\begin{gathered}
\left\{\begin{array}{c}
\dot{\mathbf{W}}(s) \\
\dot{\mathbf{Y}}(s)
\end{array}\right\}=\left[\begin{array}{cc}
\mathbf{A}(s) & -\mathbf{B}(s) \mathbf{R}^{-1} \mathbf{B}^{T}(s) \\
0 & -\mathbf{A}^{T}(s)
\end{array}\right]\left\{\begin{array}{c}
\mathbf{W}(s) \\
\mathbf{Y}(s)
\end{array}\right\} \\
\dot{\mathbf{Z}}(s)=\mathbf{F}(s) \mathbf{Z}(s) \\
\mathbf{N}(s)=\mathbf{Y}(s) \mathbf{W}(s)^{-1}
\end{gathered}
$$

ROSEHUNMAN

Set $\mathbf{Z}(s)$ at target plane:

$$
\begin{aligned}
& \mathbf{W}\left(s_{t}\right)=\mathbf{I} \\
& \mathbf{Y}\left(s_{t}\right)=\mathbf{P}
\end{aligned}
$$

Back propagate the solution from target plane to current downrange arclength:

$$
\begin{gathered}
\mathbf{Z}_{n_{s}}=\left(\mathbf{I}+\frac{h}{2} \mathbf{F}_{n_{s}}\right)^{-1} \mathbf{Z}\left(s_{t}\right) \\
\mathbf{Z}_{k}=\left(\mathbf{I}+\frac{h}{2} \mathbf{F}_{k}\right)^{-1}\left(\mathbf{I}-\frac{h}{2} \mathbf{F}_{k+1}\right) \mathbf{Z}_{k+1}, k=0,1, \ldots, n_{s}-1
\end{gathered}
$$

ROSSHUMMAN

Algorithm reviewed:

- At the first time in the control sampling period, solve for and save the coefficients for creating the vacuum model.
- The model will launch from the origin, intersect a projectile state early in the trajectory, and hit the target.
- Compute the pitch angle to get from current position to the first spot on the vacuum trajectory. From the prediction of this angle, develop the current value of the δ_{θ} state.
- Recursively predict values for $p, V, c_{\theta}, s_{\theta}$, and h using the vacuum trajectory model while updating aerodynamic coefficients at each segment based on new predicted velocity and altitude.
- Build the corresponding matrix Hamiltonian for each segment.
- Integrate backwards in time using (54) - (55).
- Using Z_{1}, compute the Riccati solution at the current state from (52).
- Compute the control needed at the current state using (47).
- Convert to dimensional form, limit from [-1,1] rad and rotate into roll frame.

ROSETULMAN

Results

- Nash, A. L., $\dagger \ddagger$ and Burchett, B. T., "Euler-Lagrange Optimal Control of Indirect Fire Symmetric Projectiles", Accepted for presentation at AIAA Science and Technology Forum and Exposition 2016, San Diego, CA, 4-8 January, 2016.
- Burchett, B. T., and Nash, A. L., \dagger "Euler-Lagrange Optimal Control for Symmetric Projectiles", Proceedings of the AIAA Science and Technology Forum and Exposition 2015, Kissimee, FL, 5-9 January, 2015. doi: 10.2514/6.2015-1020
- Burchett, B. T., "Predictive Optimal Pulse-jet Control for Symmetric Projectiles", Proceedings ofthe AIAA Science and Technology Forum and Exposition 2014, National Harbor, MD, AlAA paper no. 2014-0883. doi: 10.2514/6.2014-0883

Backup Slides

Trade Study - Effect of Trajectory Discretization

Trade Study - Effect of Controller Sampling Period

ROSTH:
INSTITUTE OF TECHNOLOCY

Robustness of Guidance - Convergence to Vacuum Trajectory

ROS INSTITUTE OF TECHNOLOGY

Limited predictions required - Accuracy improves greatly with downrange travel.

ROS $=1$ M MAN INSTITUTE OF TECHNOLOCY

