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Three Recent Advances in 
Optimal Control of Fin Stabilized 

Surface to Surface Missiles
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Technique #1 - Predictive Optimal Pulse-

jet Control for Symmetric Projectiles

10/7/201510/7/2015

Motivation

10/7/201510/7/2015

Previous efforts (2001, 2008) required a prediction of the 

uncontrolled, and controlled trajectories.

Pulsing changes angular rates leaving other states alone.  

(impulse model)

Interim work (2011) found trajectory sensitivities to changes 

in initial angular rates by finite differencing.

Current method uses closed-form sensitivities (2012) which 

are computed six times faster than finite differences.
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Technique #1
Predictive Optimal Pulse-jet Control for 
Symmetric Projectiles

10/7/201510/7/2015

Knowing the predicted impact point and sensitivity with 

respect to changes in initial angular rates, correction times 

are determined by two methods:

Default trajectory

Size of correction

for 'shack'

Direction of correction

In target plane

{δ y, δ z, δθ, δ y}

Perturbed trajectories

From unit δ v, δ w, δ q, δ r

Perturbed trajectories are not 

calculated, but sensitivities 

are propagated as co-states

Target plane direction is mapped to angular rate correction 

vector through a Jacobian matrix.  This in turn maps to roll 

angle at which pulse jet should be fired  

Corrected trajectory

Predicted impact point

Correction size is fixed by distance to go.  

Firing time then determined when 

remaining distance provides appropriate 

size correction.

Default trajectory
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Linear Theory Model

10/7/201510/7/2015

ΞΞΞΞ contains epicyclic modes

ΞΞΞΞ is invertible

ΞΞΞΞ2 is the Magnus (=0 in this study)

Velocity state total solution is written in matrix exponential 

form for ease of differentiation.

Position state solution not so easily found since Φ matrix 

singular.

Instead, treat as linear forced ODE and use the solution:

Linear Theory Solution



5/12/2016

5

The integral can be handled by a combined matrix 
exponential, if:

Then:

Linear Theory Solution

and

Derivatives of the closed form solution are now found more 
easily.
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Derivatives of  initial angular rates at current downrange 

distance:
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This influence must be propagated along the 

trajectory:

Taylor Series Model Predictive Controller

Since pitch and yaw are unconstrained at the target, 

replace the last two rows with:
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Euler-Lagrange Optimal Control

Uncontrolled Dispersion
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Technique #2 - Euler-Lagrange Optimal 

Control for Direct Fire

10/7/201510/7/2015



5/12/2016

10

Nine State Linear Plant Model

System matrices treated as constants such that A(p,V) = A, 

etc.:

Form the finite horizon cost function:

Since Q ≥ 0, choose Q = 0, then define the Hamiltonian:

LTI Finite Horizon Optimal Control
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Taking variations yields the conditions for optimality:

Thus the control law is 

LTI Finite Horizon Optimal Control, 

Cont'd

State and co-state ODEs are collected into a single matrix 

equation:

Which can be solved using state transition matrices such 

that:

LTI Finite Horizon Optimal Control, Cont'd
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Such that the current co-state is given by:

And the transition matrices are given by the full 18 x 18 

matrix exponential:

LTI Optimal Control cont'd

−6 −4 −2 0 2 4 6

x 10
−3

−2

0

2

4

6
x 10

−3

Crossrange (ft)

A
lt
it
u

d
e

 (
ft

)

Dispersions, uncontrolled, controlled
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Controlled, no range correction

Uncontrolled
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Dispersion, with range correction
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Controlled, with range correction

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-20

0

20

40

60

80

100

120

140

Downrange (ft)

C
ro

s
s

ra
n
g
e

 (
ft

)

 

 

Ctrl

Unctrl

Target

Technique #3 - Euler-Lagrange Optimal 

Control for Indirect Fire

10/7/201510/7/2015

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-2000

0

2000

4000

6000

8000

10000

Downrange (ft)

A
lt
it
u
d
e
 (

ft
)

 

 

Ctrl

Unctrl

Target

Vac. Model



5/12/2016

14

Pitch angle, roll rate, and total velocity are treated as 

parameters rather than states

Pitch angle perturbation is added to the state vector to 

preserve controllability

Angle of attack rate �� is uncontrollable but stabiliziable

state s.t. gravity is included in homogeneous solution

Modified Projectile Linear Theory 

Equations in Matrix Form
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Time varying parameters (V, p, sinθθθθ , cosθθθθ ) 
are predicted from point mass vacuum 
trajectory. 

&(� + ℎ) = &0(�) +
23

/3
450678 −

23

/3

9 � + ℎ = �:;<4
=>?@8 − �:�

'�A =
B)

B�C
��A =

B�C

B�C

The control can be found from:

Euler-Lagrange Optimal solution for Time 

Varying Piecewise Linear systems

N(s) is the solution to the time varying Riccati eqn:
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Decompose the Riccati Eqn. into two DEs:

Set Z(s) at target plane:

Back propagate the solution from target plane to current 

downrange arclength:

D �E = F

G �E = H
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• At the first time in the control sampling period, solve for and save the 
coefficients for creating the vacuum model.

– The model will launch from the origin, intersect a projectile state 
early in the trajectory, and hit the target.

• Compute the pitch angle to get from current position to the first spot 
on the vacuum trajectory.  From the prediction of this angle, develop 
the current value of the �� state.  

• Recursively predict values for 9,&,'�,��,and	ℎ using the vacuum 
trajectory model while updating aerodynamic coefficients at each 
segment based on new predicted velocity and altitude.

• Build the corresponding matrix Hamiltonian for each segment.

• Integrate backwards in time using (54) – (55).  

• Using Z1, compute the Riccati solution at the current state from (52).

• Compute the control needed at the current state using (47).

• Convert to dimensional form, limit from [-1,1] rad and rotate into roll 
frame.

Algorithm reviewed:
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Uncontrolled Controlled
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Trade Study – Effect of Trajectory 

Discretization
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Robustness of Guidance – Convergence 

to Vacuum Trajectory
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Limited predictions required – Accuracy 

improves greatly with downrange travel.


