
RRRRose-HHHHulman IIIInstitute of TTTTechnology
Department of Mechanical Engineering

ME 597 Intelligent Methods

Optimization I 1

Introduction to Optimization

The numerical methods of optimization are very similar to those for root finding. The main difference is

we are trying to find either a maximum or minimum of the function rather than f(x) = 0. In some cases f(x)

might not cross the x axis.

Let's reconsider the benchmark function.

Now let's investigate ways to find the local minima (of course pretending ignorance of the closed-form

solution available by setting)—

x = -0.8165, 0.8165.

Given the shape of f(x), we know we are looking for x = 0.8165 & f(x) = -6.089.

Let's start at x
0

= 3 . Functions of a scalar (things that can be plotted in 2D) are really quite easy since the

search direction amounts to the slope. What is not readily apparent is what should be used as a step size.

For instance, the slope at x = 3 is 25. Since I know the answer, I'll cheat a bit and set my step size to 0.1.

Convergence to a minimum is determined by the slope falling below a tolerance or the change in cost (in

this case f(x)) falling below a tolerance. We test that we have found a minimum by checking that

∂
2
f

∂x
2

 is

positive. The first few steps of optimization proceed as follows:

Because of the large step size I chose (0.1) the search oscillates around the optimal point a bit. Choosing

step size is an important step that I will ignore until after developing the first order method in many

dimensions.

Method of Steepest Descent in n dimensions

The really interesting problems in optimization involve multiple parameter dimensions. We'll use Example

13.2 from Magrab et al to motivate our development of multi-dimensional techniques.

Consider the two-spring system shown below. The springs are initially in a vertical, unstretched position.

RRRRose-HHHHulman IIIInstitute of TTTTechnology
Department of Mechanical Engineering

ME 597 Intelligent Methods

Optimization I 2

 k1 = 8.8 N / cm

 k2 = 1.1 N / cm

 L1 = 11 cm

 L2 =11 cm

 x2

 x1

 F2 = 4.5 N

 F1 = 4.5 N

A

A

After the loads are applied at joint A, the systems is deformed until it is in equilibrium. This is shown by

the loaded and deformed system in the figure. We are interested in finding the equilibrium state of the

loaded system--that is, the location (x1, x2) of joint A in the deformed system.

Equilibrium is found by deriving the PE for the system & minimizing it with respect to x1, x2 .

min
x1,x 2

PE x1 ,x2()=
1

2
k1 x1

2
+ L1 − x2()2 − L1







2

+
1

2
k2 x1

2
+ L2 + x2()2 − L2







2

− F1x1 − F2x2

Functions like this (scalar function of two variables are excellent to illustrate optimization since they are

easily visualized. Minima appear as valleys and maxima as peaks.

Figure 1: Potential Energy of System as a Cost Function

RRRRose-HHHHulman IIIInstitute of TTTTechnology
Department of Mechanical Engineering

ME 597 Intelligent Methods

Optimization I 3

The following script will plot the potential energy as a function of the deflections.

k1 = 8.8; k2 = 1.1; L1 = 11; L2 = 11; F1 = 4.5; F2 = 4.5;
[x1,x2] = meshgrid(linspace(-5,15,15),linspace(-5,15,15));
PE1 = 1/2*k1*(sqrt(x1.^2+(L1-x2).^2)-L1).^2;

PE2 = 1/2*k2*(sqrt(x1.^2+(L2+x2).^2)-L2).^2;
PE = PE1 + PE2 - F1*x1 - F2*x2;

subplot(1,2,1)
h = contour(x1,x2,PE,[-40:20:20 70:70:490]);
clabel(h);

axis([-5 15 -5 15])
subplot(1,2,2)
mesh(x1,x2,PE);
axis([-10 15 -10 15 -100 500])

Now suppose we start the search at a random point on the contour. In every case, one wise choice of

direction to search would be the 'steepest descent'. This approach is easily comprehended by skiers and

mountain climbers. If I'm going to 'ski' this mountain, I'd like to start close to the top. (If I try to start at

the top, the slope will be zero, and I won't go anywhere, unless I skate a bit first--I guess this is more like

snowboarding, but I hate to admit it.) For the sake of argument, let's pick x1 = 0, x2 = 10. Imagine

releasing a ball at zero velocity from this position on the 'mountain'. The direction the ball rolls initially is

the direction of steepest descent, or 'fall line'. We want to search in this direction. Finding this direction in

a space of n dimensions is done by finding the gradient gradF or

Instead of just 'left' or right, we now have n coefficients to describe the direction.

Occasionally, the derivatives may be difficult or impossible to find analytically. In this case, a finite

difference method may be used. That is, we can approximate each partial derivative as:

Choosing the size of δxi can be somewhat of an art, but I suggest δxi=0.0001 for most problems.

The previous method may then be extended to a function of many variables

RRRRose-HHHHulman IIIInstitute of TTTTechnology
Department of Mechanical Engineering

ME 597 Intelligent Methods

Optimization I 4

OR

Let's try this on the example. First find the analytic derivatives of PE:

∂PE x1,x2()
∂x1

=

k1x1 x1
2

+ L1 − x 2()2 − L1






x1
2

+ L1 − x 2()
2

+

k2x1 x1
2

+ L2 + x2()2 − L2






x1
2

+ L2 + x2()
2

− F1

∂PE x1 ,x2()
∂x2

=

−k1 L1 − x2() x1
2

+ L1 − x2()2 − L1






x1
2

+ L1 − x2()
2

+

k2 L2 + x2() x1
2

+ L2 + x2()2 − L2






x1
2

+ L2 + x2()
2

− F2

Now program the Newton method. Some notes on programming--The wise programmer will look for

common factors in the expressions above and compute these first, avoiding repeating the same computation

and thus speeding things up. Also, it might be good to write a function that evaluates the PE and

derivatives of the PE given the deflections.

Figure 2: First one hundred iterations of steepest descent.

RRRRose-HHHHulman IIIInstitute of TTTTechnology
Department of Mechanical Engineering

ME 597 Intelligent Methods

Optimization I 5

Cubic Line Search

As we saw in the 1D case, step size is critical to rapid convergence. That is, we need to specify how far the

'skier' will descend along a certain direction before she again checks the slope.

In general, evaluating the cost (PE in this example) is much easier than evaluating the slope. The current

example illustrates this well.

One approach to determining the best step size is the cubic line search. In this method, we determine the

search direction, and then build a one-dimensional profile of the cost along this direction. Graphically, we

can think of this as 'slicing' through the mountain resulting, for our current example in the following 1D

profile:

0 0.05 0.1 0.15 0.2
-100

0

100

200

300

400

500

α (step size)

 x
0

− α 3∇F

 x
0

− α 2∇F

 x
0

− α 4∇F

 x
0

α1 = 0()

Figure 3: Cubic Line Search Geometry
Now we search along the prescribed direction for at least four points. In the best case, these points will

capture a local minimum.

Deciding what step size to use in finding these points is very much an art. You might have noticed that the

largest step size tested above is 0.17. I did this on purpose to make the plot look pretty, but in general, we

will not have this much insight into the problem. If the cost remains bounded, then we can use

.

However, even if the cost remains bounded over this interval, the quality of information may be poor if no

minimum is straddled, or if the cost gets very high in the search direction. Occasionally, additional cost

evaluations and logic may be required to improve the quality of information.

RRRRose-HHHHulman IIIInstitute of TTTTechnology
Department of Mechanical Engineering

ME 597 Intelligent Methods

Optimization I 6

Once we have four points (including the current guess) we form a cubic polynomial model of the cost along

the current search direction, that is

 (1)

With four points, and four unknown constants, the curve fit is done by solution of a Vandermonde system.

(In practice, use the polyfit function, just thought I'd show you the inner workings here)

Solving the linear system above gives us the cis in the cubic model of Eqn 1.

Once we have the cubic model, we can find the minimum along that direction by taking the derivative and

setting it (the slope) equal to zero. Given the form of the cubic in Eqn 1, the derivative will always be the

following quadratic polynomial:

(2)

So the roots can be found by the quadratic formula:

The root corresponding to the minimum is determined by testing the second derivative:

if

 minimum is at
*

1α

else

 minimum is at
*

2α

Now set the step size according to the logic above.

Thus, using cubic line search, the steepest descent method is modified as follows:

 Determine the search direction

RRRRose-HHHHulman IIIInstitute of TTTTechnology
Department of Mechanical Engineering

ME 597 Intelligent Methods

Optimization I 7

 Build the cubic model along

 Solve (2) for possible minima

 Test

 and select a step size

 Update x by

 Repeat until convergence

Here we try it on the example from Magrab:

Figure 4: First ten iterations of Steepest Descent Method with Cubic Line Search

RRRRose-HHHHulman IIIInstitute of TTTTechnology
Department of Mechanical Engineering

ME 597 Intelligent Methods

Optimization I 8

Second order Newton Method in Multiple Dimensions

Just as we sought a parabolic model of the non-linear equations in order to quickly iterate to a solution, we

can create a quadratic (paraboloid) model of any non-linear cost function in many dimensions. The model

will be based on multi-dimensional Taylor Series, and will have the form:

 (3)

Where c is the gradient vector:

H is the Hessian Matrix

x is the current guess and x* is the optimum solution. When x is optimized the first derivative of Eqn 3

will be zero:

Solving for x*:

(4)

Equation 4 gives the update sequence for a Second Order Newton Method in many dimensions.

Essentially, the H matrix has the effect of steering the search direction toward the minima of the paraboloid

RRRRose-HHHHulman IIIInstitute of TTTTechnology
Department of Mechanical Engineering

ME 597 Intelligent Methods

Optimization I 9

model, rather than in the steepest descent direction. Once the search direction is determined, we would

determine the step size from a cubic line search just as we did in the first order case.

In this case, the test for a minima is that the gradient (slope) is very small and the Hessian matrix H is

positive definite. The second order Newton method can only be applied in a region where the H matrix is

positive definite. This places serious limitations on the use of this algorithm for the current problem.

Positive definite H means the contour looks like a bowl sitting 'right side up', meaning the contents cannot

escape by gravity alone. The region that clearly looks like a peak has a non positive definite H.

This method is rarely advantageous as the second derivatives in the H matrix are usually expensive to

compute. The attached Maple spreadsheet gives the needed second derivatives for our potential energy

example as a case in point. Also, I must initialize in a region where H is positive definite, so I won't be

making a valid comparison with the previous two methods. I will conclude this tome by reporting whether

or not I am successful at programming those equations in the next hour.

Victory!! I was able to finish the program in about 30 minutes. The top-level function is very similar to the

one for steepest descent with cubic line search. Only a few lines are modified to provide for computing the

Hessian matrix and determining the search direction to be H
−1

c .

The final plot shows that we approach the optimum point almost directly, and arrive in just a few

iterations.

Figure 5: Result of Second Order Newton Search

References

Magrab, E. B., et al, An Engineer's Guide to Matlab, Prentice-Hall, Upper Saddle River, NJ, 2000.

Strang, G., Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, MA, 1986.

Matlab Optimization Toolbox Documentation:

http://www.mathworks.com/access/helpdesk/help/pdf_doc/optim/optim_tb.pdf

