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Introduction

Consider the non-homogeneous wave equation

∂2u

∂t2
− c2

∂2u

∂x2
= F (x, t) (1)

for a function u(x, t) for −∞ < x < ∞ and t > 0. Here the function F can be
thought of physically as a “force per unit length”, divided by linear density, acting
on the string (go back to the derivation of the wave equation to see this; F has units
of acceleration, and can be though of as the acceleration induced in the string by an
applied force). We want to solve the non-homogeneous equation with given initial
conditions.

In what follows we’ll seek a solution to equation (1) with ZERO initial conditions.
This makes it easy to solve the equation with any desired initial conditions—just
use linearity and superposition: If we find a solution u1(x, t) to equation (1) with
u1(x, 0) =

∂u1

∂t
(x, 0) = 0, and a solution u2(x, t) to the homogeneous wave equation

with u2(x, 0) = f(x) and ∂u2

∂t
(x, 0) = g(x) (which we now how to do), then u(x, t) =

u1(x, t) + u2(x, t) satisfies (1) with u(x, 0) = f(x) and ∂u
∂t
(x, 0) = g(x).

In what follows we’ll use the following facts from Calculus:

d

dx

∫ x

a
f(z) dz = f(x) (2)

d

dx

∫ a

x
f(z) dz = −f(x) (3)

d

dx

∫ x

a
f(x, z) dz = f(x, x) +

∫ x

a
fx(x, z) dz (4)

d

dx

∫ a

x
f(x, z) dz = −f(x, x) +

∫ x

a
fx(x, z) dz. (5)

Change of Variables

Here’s a clever trick for finding a solution to equation (1). We do a change coor-
dinates. Specifically, let y = x− ct and s = x+ ct (so x = (s+ y)/2, t = (s− y)/(2c)).
This new coordinate system can be visualized as two new axes: a s axis (correspond-
ing to y = 0) which runs along the line x = ct, and a y axis (corresponding to s = 0)
running along x = −ct. Also note that we’ll always have y ≤ s (with y = s corre-
sponding to t = 0):
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Define a function v(y, s) = u(x, t) (so v is just u, but in the new coordinate system.
We can write, more explicitly

u(x, t) = v(y, s) = v(x− ct, x+ ct).

We find that (use the chain rule)

ut(x, t) = −cvy(x− ct, x+ ct) + cvs(x− ct, x+ ct),

ux(x, t) = vy(x− ct, x+ ct) + vs(x− ct, x+ ct).

The second derivatives are

utt(x, t) = c2vyy(x− ct, x+ ct)− 2c2vsy(x− ct, x+ ct) + c2vss(x− ct, x+ ct), (6)

uxx(x, t) = vyy(x− ct, x+ ct) + 2vsy(x− ct, x+ ct) + vss(x− ct, x+ ct). (7)

If utt − c2uxx = F then we find from the above equations (6)-(7) that, amazingly

−4c2vsy(x− ct, x+ ct) = F (x, t)

or, using y = x− ct, s = x+ ct, just (back to Leibnitz notation)

∂2v

∂s∂y
(y, s) = − 1

4c2
G(y, s). (8)

where G(y, s) = F (x, t) = F ( s+y
2
, s−y

2c
) denotes F in the (y, s) coordinate system.

Equation (8) is the wave equation, but in the new (y, s) coordinate system.

Example: The Homogeneous Case

Let’s take a moment to consider the case F ≡ 0 (so G ≡ 0). In this case equation
(8) becomes just

∂2v

∂s∂y
(y, s) = 0. (9)

This is easy to solve: Integrate both sides in s to find that

∂v

∂y
(y, s) = c(y) (10)

where c(y) indicates a “constant” with respect to s (which can be a function of y).
Now integrate both sides of equation (10) with respect to y to find

v(y, s) = c1(y) + c2(s) (11)

where c1(y) =
∫
c(y) dy and c2(s) is some “constant” with respect to y. (You should

plug v from equation (11) back into equation (9) to make sure you belief this is in fact
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a solution!) If we switch back to (x, t) coordinates and recall that u(x, t) = v(y, s)
with y = x− ct, s = x+ t then we have

u(x, t) = c1(x− ct) + c2(x+ ct)

for some functions c1 and c2. This shows (as we did prior to the D’Alembert formula)
that the solution consists of a right moving (c1(x− ct)) and left moving (c2(x + ct))
wave. We can then rig c1 and c2 as before to get desired initial conditions.

Back to the Nonhomogeneous Case

We can proceed pretty much as in the homogeneous case, but I’ll use definite
integrals and be careful with limits. Integrate both sides of equation (8) with respect
to y; the upper limit should be y = y0, but lower limit can be ANY function of s, say
A(s). You obtain

∂v

∂s
(y0, s)−

∂v

∂s
(A(s), s) = − 1

4c2

∫ y0

A(s)
G(y, s) dy.

Let’s move the ∂v
∂s
(A(s), s) to the right side and just call it c(s), to obtain

∂v

∂s
(y0, s) = − 1

4c2

∫ y0

A(s)
G(y, s) dy + c(s). (12)

You can think of c(s) as a “constant of integration”, at least constant in y. If you’re
suspicious of this, differentiate both sides of equation (12) in y0 and confirm that you
get back (8), no matter what you take for c(s).

Now integrate both sides of equation (12) with respect to s from s = B(y0) to
s = s0 (where B(y0) is some function of y0) to find

v(y0, s0)− v(y0, B(y0)) = − 1

4c2

∫ s0

B(y0)

∫ y0

A(s)
G(y, s) dy ds+ C(s0)− C(B(y0))

where C(s) is an anti-derivative for c(s). Move the v(y0, B(y0)) term to the right side
and write the whole thing as

v(y0, s0) = − 1

4c2

∫ s0

B(y0)

∫ y0

A(s)
G(y, s) dy ds+ c1(s0) + c2(y0)

for some functions c1(s0) and c2(y0). Again, you can differentiate both sides of the
above equation in s0 and verify you get back (12).

Now notice that if we were to back to the (x, t) coordinate system, c1(s) and
c2(y) would become c1(x + ct) and c2(x − ct), respectively, which are solutions to
the homogeneous wave equation. Let’s drop them, since they don’t contribute to the
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nonhomogeneous term we’re trying to obtain (but they do come in to play for the
initial conditions, though we won’t need them). We’re left with

v(y0, s0) = − 1

4c2

∫ s0

B(y0)

∫ y0

A(s)
G(y, s) dy ds. (13)

You can check that v as defined by equation (13) satisfies the PDE (8) for any choice
of A(s) and B(y0), so let’s try to rig these functions so that v yields a function u(x, t)
with zero initial conditions.

Getting Zero Initial Conditions

Note that t = 0 in the (x, t) coordinates corresponds to y = s in the (y, s)
coordinate system. We’d like u(x, 0) = 0 for all x, or equivalently, v(s, s) = 0 for all
s. One easy way to obtain this is to take B(y) = y so that from equation (13)

v(y0, s0) = − 1

4c2

∫ s0

y0

∫ y0

A(s)
G(y, s) dy ds. (14)

If y0 = s0 then v(y0, s0) = 0 is automatic.
Now we can try to pick A(s) to get the condition ut(x, 0) = 0. We computed

ut(x, t) = −cvy(x − ct, x + ct) + cvs(x − ct, x + ct) on page 2, and so ut(x, 0) =
−cvy(x, x)+ cvs(x, x). Requiring ut(x, 0) = 0 leads to the requirement vy = vs on the
line y = s. It’s easy to compute

∂v

∂s0
(y0, s0) = − 1

4c2

∫ y0

A(s)
G(y, s0) dy. (15)

To compute ∂v
∂y0

I’ll use some of the rules (2)-(5) from the front page. Specifically,
let’s write

v(y0, s0) = − 1

4c2

∫ s0

y0
H(y0, s) ds

where H(y0, s) =
∫ y0

A(s)
G(y, s) dy. We can compute (use equation (11))

∂v

∂y0
(y0, s) = − 1

4c2
(−H(y0, y0) +

∫ s0

y0
Hy(y0, s) ds).

But by rule (2) we have Hy(y0, s) = G(y0, s). Use this in the above equation and fill
back in the definition of H to obtain

∂v

∂y0
(y0, s0) =

1

4c2
(
∫ y0

A(y0)
G(y, y0) dy −

∫ s0

y0
G(y0, s) ds). (16)

Now use equations (15) and (16) to write out the requirement that vs(y0, y0) −
vy(y0, y0) = 0 for all y0, to obtain

1

4c2

(
−
∫ y0

A(y0)
G(y, y0) dy +

∫ y0

y0
G(y0, s) ds−

∫ y0

A(y0)
G(y, y0) dy

)
= 0.
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or (since the middle integral is clearly zero and the other two are identical)∫ y0

A(y0)
G(y, y0) dy = 0

if we multiply by 1/(4c2). This last equation clearly is satisfied if (and generally, only
if) A(y0) = y0. So we’ve shown that we should take

v(y0, s0) = − 1

4c2

∫ s0

y0

∫ y0

s
G(y, s) dy ds.

One last modification: In the double integral above we have from the outer integral
limits that y0 ≤ s ≤ s0, while the inner integral runs from y = s to y = y0—but
y0 ≤ s, so let’s flip the limits in the inner integral and put a minus in front. We have

v(y0, s0) =
1

4c2

∫ s0

y0

∫ s

y0
G(y, s) dy ds. (17)

In some sense we could quit here: Since we defined v(y, s) = u(x, t) (with y =
x− ct, s = x+ ct) we have u(x0, t0) = v(x0 − ct0, x0 + ct0), or

u(x0, t0) =
1

4c2

∫ x0+ct0

x0−ct0

∫ s

x0−ct0
F (

s+ y

2
,
s− y

2c
) dy ds (18)

where we’ve use the fact that G(y, s) = F ( s+y
2
, s−y

2c
). Equation (18) defines the solu-

tion to (1) with zero initial conditions. But there’s some value in changing the double
integral back into the original (x, t) coordinate system.

Back to the Original Coordinates

The last step to finish this off is to change variables in the integral. Consider a
specific point with coordinates (x0, t0) in the (x, t) coordinate system. Such a point
has coordinates (y0, s0) in the (y, s) coordinate system. If you’ve had advanced cal-
culus you ought to recall that we need to change the change of coordinates dictates
a change in the integrand, as dx dt = Jdy ds where J is the Jacobian of the transfor-
mation taking (y, s) to (x, t), given by the absolute value of the determinant of the
matrix [

∂x
∂y

∂x
∂s

∂t
∂y

∂t
∂s

]
=

[
1
2

1
2c

1
2

− 1
2c

]

and turns out to be J = 1
2c
. In short, dx dt = 1

2c
dy ds, or dy ds = 2c dx dt. The double

integral will look like
1

2c

∫ ?

?

∫ ?

?
F (x, t) dx dt
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where the hard part is finding the limits of integration. Refer to the figures below, in
which I label the point (x0, t0) in both coordinates systems, on the left. The double

integral in equation (18) has limits s = y0 to s = s0 (outer integral) and y = y0 to
y = s (inner integral), corresponding to the shaded triangular region in the figure on
the right. The three sides are given by the equations as follows: The sloped sides
is y = s, corresponding to t = 0 in the original coordinates; the horizontal side is
s = s0, or x + ct = x0 + ct0 in original coordinates; the vertical side is y = y0, or
x − ct = x0 − ct0 in original coordinates. But these form exactly the sides of the
backward light cone for (x0, t0)! So the integral for u becomes, after changing the
limits of integration

u(x0, t0) =
1

2c

∫ t0

0

∫ x0+c(t0−t)

x0−c(t0−t)
F (x, t) dx dt.

All in all, the solution to equation (1) with initial conditions u(x, 0) = f(x), ut(x, 0) =
g(x) is given by

u(x0, t0) =
1

2
(f(x0−ct0)+f(x0+ct0))+

1

2c

∫ x0+ct0

x0−ct0
g(z) dz+

1

2c

∫ t0

0

∫ x0+c(t0−t)

x0−c(t0−t)
F (x, t) dx dt.

One last remark: the double integral involving F is yet another confirmation of the
principal of causality: only events in the backward light cone affect the solution at
any given point.
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