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1 Review

We’ve figured out how to solve the wave equation
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for a function u(z,t) for —oo < < oo and ¢ > 0 with initial conditions
w(,0) = f(x), (2)
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and showed that the problem is well-posed. The solution is in fact
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uw,t) = 5 (fle—et) + fla+et) +o- [ g(=)d (4)

Solution on a Half-Space

It’s not hard to modify the solution procedure to solve the wave equation
(1) on the half-line > 0; think of a string with one end tied at = 0. In fact,
we need one additional condition: the value of u (the vertical displacement)
at x = 0. For simplicity we’ll use u(0,¢) = 0 for all . Of course f and g are
given only for x > 0. For consistency we should assume that f(0) = 0 and
g(0) = 0 (think physically: why?)

To solve the half-line problem, we extend f as an odd function to the

whole real line, as
2oy ) f(o), x>0
f(x)—{ —f(=x), <0

Note that f is continuous if f is continuous. Let § denote the similar odd
extension of g. Let @(x,t) denote the solution to the wave equation on the
whole real line with initial data f and g, so that

i(x,t) = ; (f(:c —ct) + flz + ct)) + 1/x §(2) dz. (5)
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Now take u(z,t) = t(x,t) for x > 0. The function u obviously satisfies the
wave equation, since u also does, and u has the right initial conditions. The
only question is whether u(0,¢) = 0 for all ¢ > 0 (equivalently, @(0,¢) = 0).
From equation (5) we have

i(0,1) = 5 (F=et) + Fe) + o [ () d=

C J—ct

But f(—ct) = —f(ct), so those terms cancel. Also, § is odd, so the integral
is zero; it works!
There’s more to say, though. Here’s where a picture is helpful:

For a point (xg,t9) which lies below the line z = ct (i.e., xy > cty), as
illustrated on the left, the function @ is synthesized from initial data from
xr = x9 — cty to x = xg + cty, and here f = f and g = g. For such points we
can use the standard D’Alembert formula (4), without reference to any odd
extensions of f and g. This is merely another consequences of causality: such
points lie too far from the endpoint x = 0 to be affected by the boundary by
time t = 1.

On the other hand, for a point (zo, ty) which lies above the line x = ¢t (so
xy < ctg) we really do need to use (5). But that formula can be massaged
into a slightly nicer form that also makes no reference to odd extensions.
Refer to the above picture on the right: The integral of g from x = zy — ¢ty
to © = xg + cty splits into two integrals, one from x = xy — cty to x = 0, the
other from x = 0 to x = ¢ + cty. We write a(xg,to) as

u(xo, to) = ; (f(xo — cto) + flzo + Cto))+21 /IO g(2) d2+216 /jﬁdo g(z)dz
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But f(:vo + cty) = f(xo + ctp), and between x = 0 and = = x¢ + cty in the
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last integral above we have g = g. We can thus write

u(eoste) = 3 (Fleo —cto) 4w +eto)) o [ g(ydety [T (e e

2 2¢ Jxo—cto 2c
Now make use of the fact that f(z) = —f(—z) for z < 0 to write f(zo—cty) =
—f(cto — o). Also, in the range z¢ — cty < z < 0 we have §(z) = —g(—=2).
We now have

w(wo,to) — ;(— Fleto — 20) + f(:zc0+cto))—21 / " g(=2) dz+21c /0 T ) d

C o—cto

One final change of variables in the first integral on the right above (substitute
—2z — 2z, 80 dz =— —dz) and lumping the resulting integral together gives

1 1 ct+x
ula,t) = 3 (flet+a) = flet =) +5- [ glz)dz (6)
ct—x
where I also dropped the subscripts on the variables. This gives the solution
for x < ct.

Problem 1: Replace the boundary condition u(0,t) = 0 by the so-called
Neumann condition g—Z(O, t) =0 for all . Find a formula for the solution to
the wave equation with the Neumann condition on the half-line analogous to
(6) for = < c¢t. Hint: Make EVEN extensions of f and g to the whole line.

Solution on Bounded Intervals

The above trick for the half-line can also be used to write down the
solution to the wave equation on a bounded interval. We won’t do this in
great detail, for there are better ways to do this problem, but it’s kind of
fun to think about (for a few minutes!) For simplicity take the interval to
be (0,1). Suppose we want a solution to the wave equation for 0 < z < 1
and ¢t > 0 with initial data f and g, both defined for 0 <z < 1, and we also
want u(0,t) = u(1,t) = 0 at all times (the string is tied at both ends).

To solve this we can extend f and g periodically to the whole real line,
as odd functions. Specifically, set f(z) = —f(—z) for —1 < 2 < 0, and then
extend f to the whole real line as a function with period 2. Here’s a crude



picture:

Do the same for g to obtain §. The original D’Alembert formula (4) with
f = g,9 = g yields the solution! One could even try to manipulate the
formula to get it in terms of f and g alone, with no reference to the periodic
extensions f and g, but this turns out to be a bit of mess. You end up with
infinitely many different formulas, depending on the point (x,t)! In any case,
you ought to convince yourself (draw a picture) that «(0,t) = u(1,¢) at all
times. It’s very similar to the half-line case. So we've proved that the wave
equation has a solution on a bounded interval!

Problem 2: Draw a picture and explain why u(0,t) = u(1,t).



