The Wave Equation III
 MA 436
 Kurt Bryan

1 Review

We've figured out how to solve the wave equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0 \tag{1}
\end{equation*}
$$

for a function $u(x, t)$ for $-\infty<x<\infty$ and $t>0$ with initial conditions

$$
\begin{align*}
u(x, 0) & =f(x) \tag{2}\\
\frac{\partial u}{\partial t}(x, 0) & =g(x) \tag{3}
\end{align*}
$$

and showed that the problem is well-posed. The solution is in fact

$$
\begin{equation*}
u(x, t)=\frac{1}{2}(f(x-c t)+f(x+c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(z) d z \tag{4}
\end{equation*}
$$

Solution on a Half-Space

It's not hard to modify the solution procedure to solve the wave equation (1) on the half-line $x>0$; think of a string with one end tied at $x=0$. In fact, we need one additional condition: the value of u (the vertical displacement) at $x=0$. For simplicity we'll use $u(0, t)=0$ for all t. Of course f and g are given only for $x \geq 0$. For consistency we should assume that $f(0)=0$ and $g(0)=0$ (think physically: why?)

To solve the half-line problem, we extend f as an odd function to the whole real line, as

$$
\tilde{f}(x)= \begin{cases}f(x), & x \geq 0 \\ -f(-x), & x<0\end{cases}
$$

Note that \tilde{f} is continuous if f is continuous. Let \tilde{g} denote the similar odd extension of g. Let $\tilde{u}(x, t)$ denote the solution to the wave equation on the whole real line with initial data \tilde{f} and \tilde{g}, so that

$$
\begin{equation*}
\tilde{u}(x, t)=\frac{1}{2}(\tilde{f}(x-c t)+\tilde{f}(x+c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} \tilde{g}(z) d z . \tag{5}
\end{equation*}
$$

Now take $u(x, t)=\tilde{u}(x, t)$ for $x \geq 0$. The function u obviously satisfies the wave equation, since \tilde{u} also does, and u has the right initial conditions. The only question is whether $u(0, t)=0$ for all $t>0$ (equivalently, $\tilde{u}(0, t)=0$). From equation (5) we have

$$
\tilde{u}(0, t)=\frac{1}{2}(\tilde{f}(-c t)+\tilde{f}(c t))+\frac{1}{2 c} \int_{-c t}^{c t} \tilde{g}(z) d z .
$$

But $\tilde{f}(-c t)=-\tilde{f}(c t)$, so those terms cancel. Also, \tilde{g} is odd, so the integral is zero; it works!

There's more to say, though. Here's where a picture is helpful:

For a point $\left(x_{0}, t_{0}\right)$ which lies below the line $x=c t$ (i.e., $\left.x_{0}>c t_{0}\right)$, as illustrated on the left, the function \tilde{u} is synthesized from initial data from $x=x_{0}-c t_{0}$ to $x=x_{0}+c t_{0}$, and here $f=\tilde{f}$ and $g=\tilde{g}$. For such points we can use the standard D'Alembert formula (4), without reference to any odd extensions of f and g. This is merely another consequences of causality: such points lie too far from the endpoint $x=0$ to be affected by the boundary by time $t=t_{0}$.

On the other hand, for a point $\left(x_{0}, t_{0}\right)$ which lies above the line $x=c t$ (so $x_{0}<c t_{0}$) we really do need to use (5). But that formula can be massaged into a slightly nicer form that also makes no reference to odd extensions. Refer to the above picture on the right: The integral of \tilde{g} from $x=x_{0}-c t_{0}$ to $x=x_{0}+c t_{0}$ splits into two integrals, one from $x=x_{0}-c t_{0}$ to $x=0$, the other from $x=0$ to $x=x_{0}+c t_{0}$. We write $\tilde{u}\left(x_{0}, t_{0}\right)$ as
$u\left(x_{0}, t_{0}\right)=\frac{1}{2}\left(\tilde{f}\left(x_{0}-c t_{0}\right)+\tilde{f}\left(x_{0}+c t_{0}\right)\right)+\frac{1}{2 c} \int_{x_{0}-c t_{0}}^{0} \tilde{g}(z) d z+\frac{1}{2 c} \int_{0}^{x_{0}+c t_{0}} \tilde{g}(z) d z$
But $\tilde{f}\left(x_{0}+c t_{0}\right)=f\left(x_{0}+c t_{0}\right)$, and between $x=0$ and $x=x_{0}+c t_{0}$ in the
last integral above we have $\tilde{g}=g$. We can thus write
$u\left(x_{0}, t_{0}\right)=\frac{1}{2}\left(\tilde{f}\left(x_{0}-c t_{0}\right)+f\left(x_{0}+c t_{0}\right)\right)+\frac{1}{2 c} \int_{x_{0}-c t_{0}}^{0} \tilde{g}(z) d z+\frac{1}{2 c} \int_{0}^{x_{0}+c t_{0}} g(z) d z$
Now make use of the fact that $\tilde{f}(z)=-f(-z)$ for $z<0$ to write $\tilde{f}\left(x_{0}-c t_{0}\right)=$ $-f\left(c t_{0}-x_{0}\right)$. Also, in the range $x_{0}-c t_{0} \leq z<0$ we have $\tilde{g}(z)=-g(-z)$.
We now have
$u\left(x_{0}, t_{0}\right)=\frac{1}{2}\left(-f\left(c t_{0}-x_{0}\right)+f\left(x_{0}+c t_{0}\right)\right)-\frac{1}{2 c} \int_{x_{0}-c t_{0}}^{0} g(-z) d z+\frac{1}{2 c} \int_{0}^{x_{0}+c t_{0}} g(z) d z$
One final change of variables in the first integral on the right above (substitute $-z \rightarrow z$, so $d z=\rightarrow-d z$) and lumping the resulting integral together gives

$$
\begin{equation*}
u(x, t)=\frac{1}{2}(f(c t+x)-f(c t-x))+\frac{1}{2 c} \int_{c t-x}^{c t+x} g(z) d z \tag{6}
\end{equation*}
$$

where I also dropped the subscripts on the variables. This gives the solution for $x<c t$.

Problem 1: Replace the boundary condition $u(0, t)=0$ by the so-called Neumann condition $\frac{\partial u}{\partial x}(0, t)=0$ for all t. Find a formula for the solution to the wave equation with the Neumann condition on the half-line analogous to (6) for $x<c t$. Hint: Make EVEN extensions of f and g to the whole line.

Solution on Bounded Intervals

The above trick for the half-line can also be used to write down the solution to the wave equation on a bounded interval. We won't do this in great detail, for there are better ways to do this problem, but it's kind of fun to think about (for a few minutes!) For simplicity take the interval to be $(0,1)$. Suppose we want a solution to the wave equation for $0<x<1$ and $t>0$ with initial data f and g, both defined for $0 \leq x \leq 1$, and we also want $u(0, t)=u(1, t)=0$ at all times (the string is tied at both ends).

To solve this we can extend f and g periodically to the whole real line, as odd functions. Specifically, set $\tilde{f}(x)=-f(-x)$ for $-1<x<0$, and then extend \tilde{f} to the whole real line as a function with period 2. Here's a crude
picture:

Do the same for g to obtain \tilde{g}. The original D'Alembert formula (4) with $f=\tilde{g}, g=\tilde{g}$ yields the solution! One could even try to manipulate the formula to get it in terms of f and g alone, with no reference to the periodic extensions \tilde{f} and \tilde{g}, but this turns out to be a bit of mess. You end up with infinitely many different formulas, depending on the point (x, t) ! In any case, you ought to convince yourself (draw a picture) that $u(0, t)=u(1, t)$ at all times. It's very similar to the half-line case. So we've proved that the wave equation has a solution on a bounded interval!

Problem 2: Draw a picture and explain why $u(0, t)=u(1, t)$.

