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1 Review

We’ve figured out how to solve the wave equation

∂2u

∂t2
− c2

∂2u

∂x2
= 0 (1)

for a function u(x, t) for −∞ < x < ∞ and t > 0 with initial conditions

u(x, 0) = f(x), (2)

∂u

∂t
(x, 0) = g(x) (3)

and showed that the problem is well-posed. The solution is in fact

u(x, t) =
1

2
(f(x− ct) + f(x+ ct)) +

1

2c

∫ x+ct

x−ct
g(z) dz. (4)

Solution on a Half-Space

It’s not hard to modify the solution procedure to solve the wave equation
(1) on the half-line x > 0; think of a string with one end tied at x = 0. In fact,
we need one additional condition: the value of u (the vertical displacement)
at x = 0. For simplicity we’ll use u(0, t) = 0 for all t. Of course f and g are
given only for x ≥ 0. For consistency we should assume that f(0) = 0 and
g(0) = 0 (think physically: why?)

To solve the half-line problem, we extend f as an odd function to the
whole real line, as

f̃(x) =

{
f(x), x ≥ 0
−f(−x), x < 0

Note that f̃ is continuous if f is continuous. Let g̃ denote the similar odd
extension of g. Let ũ(x, t) denote the solution to the wave equation on the
whole real line with initial data f̃ and g̃, so that

ũ(x, t) =
1

2

(
f̃(x− ct) + f̃(x+ ct)

)
+

1

2c

∫ x+ct

x−ct
g̃(z) dz. (5)
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Now take u(x, t) = ũ(x, t) for x ≥ 0. The function u obviously satisfies the
wave equation, since ũ also does, and u has the right initial conditions. The
only question is whether u(0, t) = 0 for all t > 0 (equivalently, ũ(0, t) = 0).
From equation (5) we have

ũ(0, t) =
1

2

(
f̃(−ct) + f̃(ct)

)
+

1

2c

∫ ct

−ct
g̃(z) dz.

But f̃(−ct) = −f̃(ct), so those terms cancel. Also, g̃ is odd, so the integral
is zero; it works!

There’s more to say, though. Here’s where a picture is helpful:

For a point (x0, t0) which lies below the line x = ct (i.e., x0 > ct0), as
illustrated on the left, the function ũ is synthesized from initial data from
x = x0 − ct0 to x = x0 + ct0, and here f = f̃ and g = g̃. For such points we
can use the standard D’Alembert formula (4), without reference to any odd
extensions of f and g. This is merely another consequences of causality: such
points lie too far from the endpoint x = 0 to be affected by the boundary by
time t = t0.

On the other hand, for a point (x0, t0) which lies above the line x = ct (so
x0 < ct0) we really do need to use (5). But that formula can be massaged
into a slightly nicer form that also makes no reference to odd extensions.
Refer to the above picture on the right: The integral of g̃ from x = x0 − ct0
to x = x0 + ct0 splits into two integrals, one from x = x0 − ct0 to x = 0, the
other from x = 0 to x = x0 + ct0. We write ũ(x0, t0) as

u(x0, t0) =
1

2

(
f̃(x0 − ct0) + f̃(x0 + ct0)

)
+

1

2c

∫ 0

x0−ct0
g̃(z) dz+

1

2c

∫ x0+ct0

0
g̃(z) dz

But f̃(x0 + ct0) = f(x0 + ct0), and between x = 0 and x = x0 + ct0 in the

2



last integral above we have g̃ = g. We can thus write

u(x0, t0) =
1

2

(
f̃(x0 − ct0) + f(x0 + ct0)

)
+

1

2c

∫ 0

x0−ct0
g̃(z) dz+

1

2c

∫ x0+ct0

0
g(z) dz

Now make use of the fact that f̃(z) = −f(−z) for z < 0 to write f̃(x0−ct0) =
−f(ct0 − x0). Also, in the range x0 − ct0 ≤ z < 0 we have g̃(z) = −g(−z).
We now have

u(x0, t0) =
1

2
(−f(ct0 − x0) + f(x0 + ct0))−

1

2c

∫ 0

x0−ct0
g(−z) dz+

1

2c

∫ x0+ct0

0
g(z) dz

One final change of variables in the first integral on the right above (substitute
−z → z, so dz =→ −dz) and lumping the resulting integral together gives

u(x, t) =
1

2
(f(ct+ x)− f(ct− x)) +

1

2c

∫ ct+x

ct−x
g(z) dz (6)

where I also dropped the subscripts on the variables. This gives the solution
for x < ct.

Problem 1: Replace the boundary condition u(0, t) = 0 by the so-called
Neumann condition ∂u

∂x
(0, t) = 0 for all t. Find a formula for the solution to

the wave equation with the Neumann condition on the half-line analogous to
(6) for x < ct. Hint: Make EVEN extensions of f and g to the whole line.

Solution on Bounded Intervals

The above trick for the half-line can also be used to write down the
solution to the wave equation on a bounded interval. We won’t do this in
great detail, for there are better ways to do this problem, but it’s kind of
fun to think about (for a few minutes!) For simplicity take the interval to
be (0, 1). Suppose we want a solution to the wave equation for 0 < x < 1
and t > 0 with initial data f and g, both defined for 0 ≤ x ≤ 1, and we also
want u(0, t) = u(1, t) = 0 at all times (the string is tied at both ends).

To solve this we can extend f and g periodically to the whole real line,
as odd functions. Specifically, set f̃(x) = −f(−x) for −1 < x < 0, and then
extend f̃ to the whole real line as a function with period 2. Here’s a crude
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picture:

Do the same for g to obtain g̃. The original D’Alembert formula (4) with
f = g̃, g = g̃ yields the solution! One could even try to manipulate the
formula to get it in terms of f and g alone, with no reference to the periodic
extensions f̃ and g̃, but this turns out to be a bit of mess. You end up with
infinitely many different formulas, depending on the point (x, t)! In any case,
you ought to convince yourself (draw a picture) that u(0, t) = u(1, t) at all
times. It’s very similar to the half-line case. So we’ve proved that the wave
equation has a solution on a bounded interval!

Problem 2: Draw a picture and explain why u(0, t) = u(1, t).
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