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Not all interesting linear operators on a Hilbert space are bounded—
differentiation is the “prime” example (ha ha–get it?) Let T be a linear
operator with domain D(T ) where D(T ) is a subspace of a Hilbert space H.
We’ll also assume that D(T ) is dense in H, so that the closure of D(T ) is
all of H. In this case T is said to be densely defined. Of course T could be
bounded, but then it can be extended to a bounded operator on all of H,
(by continuity: if x ∈ H but x isn’t in D(T ), choose a sequence xn ⊂ D(T )
which converges to x, set T (x) = limn T (xn); it’s well-defined). So we’ll stick
to the case in which T is unbounded.

Example 1: Let H = L2(a, b) (with functions taking real values). Let
T denote differentiation with domain D(T ) = {f ∈ H : f ∈ C1[0, 1]}. The
set D(T ) is dense in H. Also, T is unbounded, for the sequence fn = sin(nx)
is bounded in L2(a, b), but T (fn) = n cos(nx) is unbounded.

One can define the adjoint operator for an unbounded densely-defined
operator T . What we’d like that T ∗ satisfy < Tx, y >=< x, T ∗y > for all
x ∈ D(T ) and all y ∈ D(T ∗). Before we define T ∗ we should figure out what
to take for D(T ∗). In fact we’ll choose D(T ∗) to be all y ∈ H such that the
linear functional x →< Tx, y > is continuous for x ∈ D(T ) (this doesn’t say
what D(T ∗) is very explicitly though). Since D(T ) is dense this allows us
to extend the functional to all x ∈ H as outline in the first paragraph. The
Riesz representation then dictates the existence of a unique g ∈ H such that
< Tx, y >=< x, g > for all x ∈ H. We define the adjoint as T ∗y = g. This
uniquely determines T ∗ on its domain.

Example 2: This continues Example 1. Let g be a C1[0, 1] function (so
g ∈ L2(0, 1)) with g(0) = g(1) = 0; let us use V to denote this subspace of
L2(0, 1) (it’s also dense). Then

< Tf, g >=

∫ 1

0

f ′(x)g(x) dx.
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Integrate by parts to find that

< Tf, g >= −
∫ 1

0

f(x)g′(x) dx.

If we take T ∗(f) = −f ′, then we have < Tf, g >=< f, T ∗g > for all
f ∈ C1[0, 1] and g ∈ V . The domain V may not be as large as possible
(that is, it may be possible to enlarge the class of g for which we obtain
< Tf, g >=< f, T ∗g >), but in any case we’ve defined an adjoint for T on a
dense subspace of H.

An operator is said to be “symmetric” if < Tx, y >=< x, Ty > for all
x, y ∈ D(T ) (note that x AND y must both be in D(T )). If it’s the case that
D(T ∗) = D(T ) then the operator is said to be self-adjoint.

Example 3: This is a small variation on Example 2. Let H = L2(0, 1)
where the functions may take values in Cl . Let T be the operator T (f) = if ′

with domain D(T ) = {f ∈ H : f ∈ C1[0, 1], f(0) = f(1)}. The adjoint of T
is defined much as in Example 2: Let g be a C1[0, 1] function (so g ∈ L2(0, 1))
with g(0) = g(1) (same conditions as f). Then

< Tf, g >=

∫ 1

0

if ′(x)g(x) dx.

Integrate by parts to find that

< Tf, g >= −i

∫ 1

0

f(x)g′(x) dx =< f, Tg > .

In other words, T is self-adjoint.
It turns out that one can define the spectrum of an unbounded operator

(similar to bounded: if (T−λI) is injective onD(T ) and ontoH with bounded
inverse, then λ is said to be in the resolvent set of T ; the spectrum σ(T )
consists of all λ NOT in the resolvent set). The spectrum of an unbounded
operator is always closed, but may not be bounded, and MAY be empty.

In Example 3, with T (f) = if ′ with the requirement f(0) = f(1), it’s
easy to see that the functions ϕn(x) = cos((π/2 + 2πn)x) are eigenfunctions
with eigenvalues λn = π/2 + 2πn (which tend to infinity).
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