Unbounded Operators MA 466 Kurt Bryan

Not all interesting linear operators on a Hilbert space are bounded differentiation is the "prime" example (ha ha–get it?) Let T be a linear operator with domain D(T) where D(T) is a subspace of a Hilbert space H. We'll also assume that D(T) is dense in H, so that the closure of D(T) is all of H. In this case T is said to be *densely defined*. Of course T could be bounded, but then it can be extended to a bounded operator on all of H, (by continuity: if $x \in H$ but x isn't in D(T), choose a sequence $x_n \subset D(T)$ which converges to x, set $T(x) = \lim_n T(x_n)$; it's well-defined). So we'll stick to the case in which T is unbounded.

Example 1: Let $H = L^2(a, b)$ (with functions taking real values). Let T denote differentiation with domain $D(T) = \{f \in H : f \in C^1[0, 1]\}$. The set D(T) is dense in H. Also, T is unbounded, for the sequence $f_n = \sin(nx)$ is bounded in $L^2(a, b)$, but $T(f_n) = n \cos(nx)$ is unbounded.

One can define the adjoint operator for an unbounded densely-defined operator T. What we'd like that T^* satisfy $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x \in D(T)$ and all $y \in D(T^*)$. Before we define T^* we should figure out what to take for $D(T^*)$. In fact we'll choose $D(T^*)$ to be all $y \in H$ such that the linear functional $x \to \langle Tx, y \rangle$ is continuous for $x \in D(T)$ (this doesn't say what $D(T^*)$ is very explicitly though). Since D(T) is dense this allows us to extend the functional to all $x \in H$ as outline in the first paragraph. The Riesz representation then dictates the existence of a unique $g \in H$ such that $\langle Tx, y \rangle = \langle x, g \rangle$ for all $x \in H$. We define the adjoint as $T^*y = g$. This uniquely determines T^* on its domain.

Example 2: This continues Example 1. Let g be a $C^1[0,1]$ function (so $g \in L^2(0,1)$) with g(0) = g(1) = 0; let us use V to denote this subspace of $L^2(0,1)$ (it's also dense). Then

$$\langle Tf,g\rangle = \int_0^1 f'(x)g(x)\,dx.$$

Integrate by parts to find that

$$< Tf, g > = -\int_0^1 f(x)g'(x) \, dx$$

If we take $T^*(f) = -f'$, then we have $\langle Tf, g \rangle = \langle f, T^*g \rangle$ for all $f \in C^1[0,1]$ and $g \in V$. The domain V may not be as large as possible (that is, it may be possible to enlarge the class of g for which we obtain $\langle Tf, g \rangle = \langle f, T^*g \rangle$), but in any case we've defined an adjoint for T on a dense subspace of H.

An operator is said to be "symmetric" if $\langle Tx, y \rangle = \langle x, Ty \rangle$ for all $x, y \in D(T)$ (note that x AND y must both be in D(T)). If it's the case that $D(T^*) = D(T)$ then the operator is said to be self-adjoint.

Example 3: This is a small variation on Example 2. Let $H = L^2(0, 1)$ where the functions may take values in \mathbb{C} . Let T be the operator T(f) = if' with domain $D(T) = \{f \in H : f \in C^1[0, 1], f(0) = f(1)\}$. The adjoint of T is defined much as in Example 2: Let g be a $C^1[0, 1]$ function (so $g \in L^2(0, 1)$) with g(0) = g(1) (same conditions as f). Then

$$\langle Tf,g \rangle = \int_0^1 if'(x)\overline{g(x)} \, dx.$$

Integrate by parts to find that

$$\langle Tf,g \rangle = -i \int_0^1 f(x) \overline{g'(x)} \, dx = \langle f,Tg \rangle.$$

In other words, T is self-adjoint.

It turns out that one can define the spectrum of an unbounded operator (similar to bounded: if $(T-\lambda I)$ is injective on D(T) and onto H with bounded inverse, then λ is said to be in the resolvent set of T; the spectrum $\sigma(T)$ consists of all λ NOT in the resolvent set). The spectrum of an unbounded operator is always closed, but may not be bounded, and MAY be empty.

In Example 3, with T(f) = if' with the requirement f(0) = f(1), it's easy to see that the functions $\phi_n(x) = \cos((\pi/2 + 2\pi n)x)$ are eigenfunctions with eigenvalues $\lambda_n = \pi/2 + 2\pi n$ (which tend to infinity).