
RSA Encryption
Kurt Bryan

1 Introduction

Our starting point is the integers

. . . ,−2,−1, 0, 1, 2, . . .

and the basic operations on integers, +,−,×,÷. The basic material could
hardly be more familiar. We denote the set integers with the letter Z and
the set of positive integers by Z+.

1.1 Divisibility

Given two integers a and b we write that a|b (and read “a divides b”) if
b = ka for some integer k. For example, 7|21 because 21 = (3)(7). Some
simple facts about divisibility:

1. If a|b then a|(cb) for any integer c.

2. If a|b and a|c then a|(xb+ yc) for any integers x and y.

3. If a|b and b|c then a|c.

These are all very easy to prove—just appeal to the definition of a|b.
Of course, for arbitrary integers a and b we can’t expect a|b, i.e., b = qa

for some integer q. But we do always have

The Division Property: Given any two integers a and b we can always
write

b = qa+ r

where q and r are unique integers and 0 ≤ r < |a|. The number q is called
the quotient and r is called the remainder.

This is also called the Division Algorithm. It’s a fact you’ve been familiar
with since the 3rd grade. I won’t bother to give a proof yet.

1

1.2 Prime Numbers

A number p whose only positive divisors are 1 (which divides anything) and
p (itself) is called a prime. Numbers which are not prime are composite. The
first 10 primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

The first, most important fact about primes numbers and the integers is

The Fundamental Theorem of Arithmetic: Every integer n > 1 can be
factored into a product of prime numbers. The factorization is unique, aside
from the order of the factors.

The Fundamental Theorem of Arithmetic may seem obvious—how could
it be any other way? But in fact there are other “number systems” which
look like the integers (with primes, factorization, etc.) but for which unique
factorization FAILS. Here’s a simple example: Let 2Z denote the set of even
integers. You can easily verify that 2Z is closed under addition and mul-
tiplication. Call a number n ∈ 2Z composite if it’s a product of two other
numbers in 2Z, prime otherwise. It’s easy to think of some primes in 2Z:
2, 6, 10, In fact, you can check that anything of the form 4k+2 is prime.
Similarly, anything of the form 4k is composite. Now notice that 60 factors
into primes in two ways, as

60 = 6 · 10 = 2 · 30.

Another such “number system” is H = {4k+1; k ∈ Z}, sometimes called
the Hilbert numbers. You can check that H is closed under multiplication
and that every element of H is either composite (factors into other elements
of H) or prime (not composite). But elements of H need not factor uniquely
into primes.

Fun Problem

• Find the smallest element of H which factors into primes in two differ-
ent ways.

Proof of the Fundamental Theorem of Arithmetic: (Based on Giblin,
Primes and Programming, Cambridge University Press) First we’ll show that
any integer can be factored. Start with some integer n > 1. If n is prime,
we’re done. Otherwise n = ab where a, b > 1. If a and b are prime, we’re
done. If one or both are not prime apply the same argument to each piece.

2

For example, if a is prime but b is not then we can write b = b1b2, and so
n = ab1b2. If all pieces are prime we’re done, otherwise apply the argument
again to any composite factor. At each stage the composite factors decrease
by at least a factor of 2. It’s clear this can continue for only a finite number
of steps before all of the factors are prime.

Proving that the factorization is unique is a little harder. The proof is
by contradiction. Suppose that at least one integer greater than one can be
factored in TWO ways. Then there is a smallest integer which factors in two
ways—let n be that integer, and suppose

n = p1p2 · · · pr = q1q2 · · · qs

where all p’s and q’s represent primes. Of course all of the p’s and q’s must
be distinct, for if, for example, p1 = qk for some k then we could divide
both sides by p1 and find a smaller n with two distinct factorizations. We
can suppose that p1 < q1. Start with p1p2 · · · pr = q1q2 · · · qs and subtract
p1q2q3 · · · qs from both sides to obtain

p1(p2p3 · · · pr − q2q3 · · · qs) = (q1 − p1)q2q3 · · · qs (1)

Define a new integer N by N = (q1 − p1)q2q3 · · · qs (N equals both sides of
the above equation). Obviously 1 < N < n, so N must factor uniquely into
prime numbers. Now, we can find a prime factorization of N which contains
the prime p1—just finish factoring the remaining stuff in the parentheses on
the left side of equation (1). But if we finish the factorization of N using
the right side of (1) (by factoring q1− p1), this leads to a factorization which
cannot include p1, since q1−p1 is not divisible by p1. This means that N < n
factorizes into primes in two different ways, contradicting our choice of n as
the smallest such example. Thus the unique factorization must be true for
all integers.

Fun Problems

1. Look at the proof of the Fundamental Theorem of Arithmetic—will the
part which proves every number factors into primes work for 2Z? I’m
not talking about the uniqueness part, just that there is a factorization.

2. Chase through the proof of the Fundamental Theorem for 2Z—where
does it fail? It might be helpful to apply the method of proof to n = 60.

3

How many primes are there? It has been known for over 2000 years that

Theorem: (Euclid) The number of primes is infinite.

Proof: The proof is by contradiction. Obviously there is at least one prime,
namely 2. Suppose that the largest prime is p. Form the number

N = 2 · 3 · 5 · · · p+ 1. (2)

Obviously N > p, so by assumption N cannot be prime. But N has a prime
factor, say q, and clearly q cannot be among 2, 3, . . . , p, for no such q ≤ p can
divide the right side of equation (2). So q > p, a contradiction. We conclude
that there is no largest prime number.

With the Fundamental Theorem at our disposal we can say a few more
things about divisibility.

More Divisibility Facts

5. If p is a prime and p|n then p is one of the primes in the prime power
factorization of n.

6. Suppose that p is a prime and p|(ab). Then p|a or p|b (or both).

7. Suppose p and q are distinct primes and p|a and q|a. Then (pq)|a.

8. a|b if and only if every prime p occurring in the prime factorization of
a also occurs in the factorization of b, and the power of p in a is ≤ the
power in b.

Problems:

• Prove the above assertions.

• Why can no integer of the form n2 + 4n+ 3 ever be prime for n > 1?

• One of the central questions in number theory is “how are the primes
distributed among the integers?” Prove that if k is a positive integer
then k! + 2, k! + 3, k! + 4, . . . k! + k are all composite. Hence there are
arbitrarily large gaps in the integers in which no primes appear.

4

1.3 Greatest Common Divisors

If a and b are integers and d is another integer which divides both a and b,
then d is called a common divisor of a and b. Among all the common divisors
of a and b (of which there are finitely many) the largest is called the greatest
common divisor, or “gcd” for short. The notation for the gcd of a and b is
(a, b). It’s easy to see that if the prime power factorizations of a and b are

a = pk11 pk22 · · · pknn ,

b = pm1
1 pm2

2 · · · pmn
n ,

where all the k’s and m’s are non-negative then

(a, b) = p
min(k1,m1)
1 p

min(k2,m2)
2 · · · pmin(kn,mn)

n . (3)

For example, 60 = 22 · 31 · 51 and 40 = 23 · 30 · 51. The gcd of 40 and
60 must be 22 · 30 · 51 = 20. For the record, the smallest number that is
divisible by both a and b is called the least common multiple, or “lcm ” for
short. The notation for it is [a, b]. It can be found by changing the “mins”
in equation (3) to “max”. In the example with 40 and 60 you find that the
[40, 60] = 23 · 31 · 51 = 120.

Here’s a piece of terminology that we’ll use A LOT: If (a, b) = 1 then a
and b are said to be relatively prime to one another. They have no common
divisors except 1.

Problems:

• Find (264, 270) by factoring each piece and using equation (3).

• True or False: The gcd of a and b is divisible by all of the other common
divisors of a and b.

• Suppose a|b. What is (a, b)?

• If p is prime and n is an integer, what is (p, n)? What is [p, n]?

• Suppose that a|(bc) and that (a, b) = 1. What conclusion can you
draw? Is the conclusion true if we drop the condition (a, b) = 1?

• Suppose (a, b) = d. What is (a/d, b/d)?

• Simplify (a, b)[a, b].

5

1.4 Euclid’s Algorithm for the GCD

Contemplate for a moment how you would compute the gcd of the numbers

a = 38799827947987324724747738478883742090011122833311837019

873409873204986660987231

b = 19781297497193749018788103895666309238701987209800193098

465631009871097630101973

using equation (3). You have to start by factoring each number. Since both
have about 70 digits, it’s going to take awhile. A long while. Larger numbers
have been factored by big computers, but your laptop probably isn’t going to
make a dent in these. What if I told you that there is a way to find the gcd
of a and b that’s much faster—so fast that you could reasonably do it BY
HAND in an afternoon, if you were inclined to spend a couple hours doing
arithmetic with 70 digit numbers? Of course, your laptop will do it instantly
if you use this fast algorithm.

The algorithm is called Euclid’s Algorithm. It’s easy to understand, es-
pecially if you work through it a few times. Here’s Euclid’s algorithm, via
an example. Let’s find (565, 165). By the division property of the integers
(or simple arithmetic!), we can write

565 = 3 · 165 + 70.

Now it’s easy to see that if any number d divides both 565 and 165, then
d|70. Similarly, anything that divides 70 and 165 automatically divides 565.
In other words, 70 and 165 have exactly the same common divisors as 565
and 165, and in particular it must be the case that (565, 165) = (165, 70).
This observation reduces the problem of finding (565, 165) to the slightly
easier problem of finding (70, 165). Repeat the process: write

165 = 2 · 70 + 25.

From the reasoning above we know that (165, 70) = (165 − 2 · 70, 70) =
(25, 70). Easier still. Continue:

70 = 2 · 25 + 20

and so we know (70, 25) = (70− 2 · 25, 25) = (20, 25). Repeat again:

25 = 1 · 20 + 5

6

so that (25, 20) = (25−1 ·20, 20) = (5, 20). If you do this one more time you
find that

20 = 4 · 5 + 0

i.e., 5|20, so (5, 20) = 5. In the end we’ve determined that

(565, 165) = (165, 70) = (70, 25) = (25, 20) = (20, 5) = 5.

Here are the computation arranged in a very systematic way:

565 = 3 · 165 + 70,

165 = 2 · 70 + 25,

70 = 2 · 25 + 20,

25 = 1 · 20 + 5,

20 = 4 · 5 + 0

If you want to be algorithmic about it you could say that to find (a, b)
(with a and b positive)

1. Set n equal to the larger of a or b, m equal to the smaller.

2. Write n = qm+ r with 0 ≤ r < m.

3. If r = 0 terminate. Then (a, b) = m, so return m.

4. Set n = m, m = r and return to step 2.

Fun Problem

• Use Euclid’s Algorithm to find the gcd of 300 and 125.

Worst Case Performance of Euclid’s Algorithm

What we want here is some kind of bound on how many steps the algo-
rithm will take in terms of the input a and b. This is surprisingly easy to
determine. Suppose that the algorithm takes n steps for some input a and

7

b, with a > b. Start by defining an+1 = a and an = b, and then write the
algorithm in the form

an+1 = qnan + an−1,

an = qn−1an−1 + an−2,

an−1 = qn−2an−2 + an−3,
...

a4 = q3a3 + a2,

a3 = q2a2 + a1,

a2 = q1a1 + 0.

At each stage of course ak gets smaller, so that 0 ≤ ak < ak+1. The most
important point is that everything in sight above is a positive integer. In
particular, a1 ≥ 1. Also, since a1 < a2 we know that a2 ≥ 2. Now look at
a3 = q2a2 + a1. Since q2 is positive, q2 ≥ 1, so a3 ≥ a2 + a1, i.e., a3 ≥ 3.
Apply the same reasoning to a4 = q3a3 + a2. We get a4 ≥ a3 + a2 or a4 ≥ 5.
Similarly a5 ≥ a4 + a3 = 8, and a6 ≥ a5 + a4 = 13, and so on.

You may recognize this pattern: It is apparent that ak ≥ fk+1, where fk
denotes the kth Fibonacci number. In particular, we find that

If Euclid’s algorithm takes n steps to compute (a, b) with a > b then a ≥ fn+2.

The Fibonacci numbers are the “worst case” for Euclid’s algorithm. We
can be assured that if a < fn+2 then Euclid’s algorithm will take AT MOST
n steps to compute the gcd (a, b). In fact, since

fn =
1√
5

[(
1 +

√
5

2

)n

−
(
1−

√
5

2

)n]

we can write a < fn+2 very explicitly as

a <
1√
5
(ϕn+2

1 − ϕn+2
2)

where ϕ1 = 1+
√
5

2
and ϕ2 = 1−

√
5

2
. But since |ϕ2| < 1, ϕn

2 gets small very
rapidly as n gets large, and so we can really write (at least for sufficiently
large n)

a <
1√
5

(
1 +

√
5

2

)n+2

8

or equivalently, for any given a Euclid’s Algorithm will need AT MOST

n =
ln(a) + ln(

√
5)

ln(1+
√
5

2
)

− 2 ≈ 2.08 ln(a)− 0.33 ≈ 4.8 log10(a)− 0.33

steps to compute the GCD of a and any smaller number.

Problem: It’s easy to see that the number of steps in Euclid’s Algorithm is
really determined by the smaller of the two input numbers, not the larger,
for after the first iteration the numbers a and b will both be equal to or less
than the smaller of the two original inputs. Use this observation to show
that the number of steps needed by Euclid is less than 5 times the number
of base ten digits in the smaller of the two inputs.

Here’s a fact that will be quite useful in the future:

Theorem: If (a, b) = h then there are integers s and t such that

h = sa+ tb. (4)

For example, (132, 216) = 12, and 12 = 5 · 132− 3 · 216. An easy way to see
that the Theorem always works is to prove it via Euclid’s algorithm. Here’s
how Euclid’s algorithm works on (132, 216):

216 = 1 · 132 + 84,

132 = 1 · 84 + 48,

84 = 1 · 48 + 36,

48 = 1 · 36 + 12,

36 = 3 · 12 + 0

From the above computations (starting with the second to last line) we get

12 = 48− 36

= 48− (84− 48) = 2 · 48− 84

= 2 · (132− 84)− 84 = 2 · 132− 3 · 84
= 2 · 132− 3 · (216− 132) = 5 · 132− 3 · 216.

9

At each stage we replace the smallest number on the right with an integer
combination of the next two largest numbers from the previous step of Eu-
clid’s Algorithm. So (132, 216) = 5 · 132− 3 · 216.

It’s not hard to check that the above example isn’t unique—it works for
the gcd of any two numbers. Try another example to convince yourself. Some
other useful facts that follow from equation (4) are:

1. For integers a and b let M be the set M = {as + bt; s, t integers}.
Then h = (a, b) is the smallest positive number in M .

2. If a and b are relatively prime ((a, b) = 1) then there are integers s and
t such that as+ bt = 1.

3. For fixed integers a, b, and d, the equation as+ bt = d is solvable in s
and t iff (a, b)|d.

To prove (1), notice that we already know that there exist integers s and
t such that as + bt = (a, b); the part we have to prove is that (a, b) is the
smallest element in M . Suppose it wasn’t, so that we can find s and t such
that

h = as+ bt

with 0 < h < (a, b). But (a, b) divides both a and b, and hence divides the
right side of the above equation, so (a, b)|h. This is impossible if h < (a, b)
so our original assumption is false: (a, b) is the smallest positive number in
M . Assertion (2) is just the special case of Theorem above when a and b are
relatively prime. Part (3) is homework!

Fun Problem

• Suppose a = 4044 and b = 792. Find integers s and t so that (a, b) =
as+ bt.

2 Congruences and Fermat’s Theorem

2.1 Congruences

You already know the basics of linear congruences. If it’s two o’clock now,
then in three hours it will be five o’clock. In 14 hours it will be four o’clock.

10

In 323 hours what time will it be? Well, 2 + 323 = 325, but we should toss
out all possible multiples of 12. In this case 325 = 12 · 27 + 1, so it will be
one o’clock. If we were on a 24 hour clock we’d toss out all possible multiples
of 24.

The idea behind congruences is exactly the same as the clock arithmetic
above; we just work with a clock that has m hours instead of 12, where m
can be any positive integer we want. Two integers a and b are said to be
congruent modulo m, written

a ≡ b (mod m)

if m|(a− b). Another way to look at it is that if we write a = q1m+ r1 and
b = q2m + r2 with 0 ≤ r1 < m and 0 ≤ r2 < m (this always be done) then
a ≡ b (mod m) means r1 = r2.

When someone asks the value of a (mod m) it’s convention to report a
number r where r ≡ a (mod m) and 0 ≤ r < m. For example, 93 (mod 15)
is 3 (mod 15). One thing worth noting: a (mod a) would be simplified to
0 (mod a). It’s like reporting that it’s zero o’clock, instead of twelve o’clock.

Properties of Congruences

1. If a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m).

2. a ≡ b (mod m) and c ≡ d (mod m) then a+ c ≡ b+ d (mod m).

3. a ≡ b (mod m) and c ≡ d (mod m) then ac ≡ bd (mod m).

4. If (c,m) = 1 and ac ≡ bc (mod m) then a ≡ b (mod m).

To prove (1), note that a ≡ b (mod m) means m|(a− b), i.e., (a− b)/m is an
integer. By hypothesis so is (b − c)/m. But then (a − b)/m + (b − c)/m =
(a− c)/m is an integer, i.e., m|(a− c) or a ≡ c (mod m). The proofs of (2)
and (3) are just as easy. Only the proof of (4) involves any subtlety at all.
We are given that ac ≡ bc (mod m), meaning that ac− bc is divisible by m,
so

(ac− bc) = km (5)

for some integer k. We want to show a− b is a multiple of m. Equation (5)
makes it clear that c|(km). But if (c,m) = 1 this means that c|k. Then Then

a− b =
k

c
m.

11

and k/c is an integer. This is the very definition of a ≡ b (mod m).
The last property isn’t true if (c,m) ̸= 1. For example, 14 ≡ 20 (mod 6),

but dividing both sides by 2 produces 7 ≡ 10 (mod 6), which is false.

Fun Problems

• Show that if n is any odd integer then n2 − 1 is divisible by 8.

• Suppose that the decimal representation for a is anan−1 · · · a1a0, i.e.,
a = an10

n + · · ·+ a1(10) + a0. Show that

a ≡ a0 + a1 + · · ·+ an (mod 3)

and so deduce the well known divisibility test for 3.

Here’s a couple more useful properties of congruences:

5 If x2 ≡ y2 (mod p) where p is prime, then either x ≡ y (mod p) or
x ≡ −y (mod p).

6 For given integers a and m the congruential equation

ax ≡ 1 (mod m)

is solvable iff (a,m) = 1.

The proofs are pretty easy. For (5), from the congruence we know that
p|(x2 − y2). But x2 − y2 = (x− y)(x+ y), so p|(x− y)(x+ y). But if a prime
p divides a product then it divides at least one factor, so either p|(x − y)
or p|(x + y) (or both). In the first case x ≡ y (mod p) and in the second
x ≡ −y (mod p).

To prove (6), once again write out what ax ≡ 1 (mod m) means: ax− 1
is divisible by m, i.e., is a multiple of m, so

ax− 1 = km

for some integer k. But this is the same as ax − km = 1, which we know
is solvable for it is equivalent to saying that (a,m) = 1. Euclid’s algorithm
would be an efficient means for finding a solution.

12

2.2 Fermat’s Little Theorem; Primality Tests

Here it is.

Fermat’s Theorem: If p is a prime and a is any integer not divisible
by p then ap−1 ≡ 1 (mod p).

Proof:(From Giblin, Primes and Programming, Cambridge University Press)
Since p doesn’t divide a, (a, p) = 1. Look at the set of numbers

a, 2a, 3a, . . . , (p− 1)a.

None of these is a multiple of p (p|(ja) implies p|j or p|a, both impossible) so
none is congruent to 0 mod p. Also, no two of these numbers are congruent
to each other mod p, for if ja ≡ ka (mod p) then ja− ka = (j − k)a would
be divisible by p, implying p|a or p|(j − k), both impossible. Thus these
numbers are, mod p, just the numbers 1,2, p − 1 in some rearranged order.
If we multiply all of them together we must have

a · 2a · 3a · · · (p− 1)a ≡ 1 · 2 · 3 · · · (p− 1) (mod p),

or, with a little simplification

ap−11 · 2 · 3 · · · (p− 1) ≡ 1 · 2 · 3 · · · (p− 1) (mod p).

But since p is relatively prime to each of 1,2, . . . , (p− 1) we can divide these
factors from both sides to conclude that

ap−1 ≡ 1 (mod p).

Of course, Fermat’s little theorem may not (and usually isn’t) true if p
isn’t prime. For example, if n = 16 and a = 6 then an−1 = 615 ≡ 0 (mod 16),
not 1.

A Simple Test for Primality; Repeated Squaring

Here’s an easy way to test whether a number n might be prime (although
we’ll shortly make some refinements). Pick a random integer a (and you
may as well choose 1 < a < n.) Compute an−1 (mod n). If it’s not 1 then n

13

CANNOT be prime. If the result is 1, then n might be prime.

Example 1: Suppose that n = 22; we want to determine whether n could
be prime, and yet we’re too dumb to tell at a glance (but smart enough to
know Fermat’s little theorem!?). Take a = 3 and compute a21 (mod 22).
There are (at least) 3 ways to do this. A very, very inefficient method, a very
inefficient method, and an efficient method.

1. The very very inefficient method is to raise 321 by brute force, then
reduce mod 22.

2. Slightly better is to do the following: 3 ≡ 3 (mod 22), so 32 ≡ 9 (mod 22),
so 33 ≡ 27 ≡ 5 (mod 22), so 34 ≡ 3 · 5 ≡ 15 (mod 22), so 35 ≡ 3 · 15 ≡
1 (mod 22), and so on. In short, to compute 3k+1 (mod 22), take the
previously computed value of 3k (mod 22), multiply by 3, then imme-
diately reduce mod 22. You never have to work directly with huge
numbers like 321.

3. The efficient way is to notice that 21 can be decomposed into powers
of two, as 21 = 16 + 4 + 1. Then compute that 3 ≡ 3 (mod 22),
32 ≡ 9 (mod 22), and 34 ≡ (32)2 ≡ 81 ≡ 15 (mod 22). Also 38 ≡
(34)2 ≡ 152 ≡ 5 (mod 22), and 316 ≡ (38)2 ≡ 25 ≡ 3 (mod 22). By
squaring repeatedly we can easily compute 32

k
for any k. In the end

we have
321 = 3163431 ≡ 3 · 15 · 3 ≡ 135 ≡ 3 (mod 22).

By repeated squaring I’ve reduced computing 321 (mod 22) to the prob-
lem of computing 31, 32, 34, 38, and 316 mod 22. A little analysis shows
that computing an this way takes log(n) multiplications modulo n (as
opposed to order n for the second method).

Since 321 ̸= 1 (mod 22), 22 is definitely NOT prime. If, on the other
hand it DID turn out that 321 ≡ 1 (mod 22), we could then try computing
a21 (mod 22) for another choice of a, and repeat this for different a as many
times as we like. If it ever turns out that a21 ̸= 1 (mod 22), we conclude 22
isn’t prime.

What if an integer n passes the test for every a we try—does that prove
that n is prime? Unfortunately there are integers n which are NOT prime
and yet will pass this test for any choice of a. If a composite integer n satis-
fies an−1 ≡ 1 (mod n) for some a relatively prime to n then we say that n is

14

a pseudoprime to base a. Even more unfortunately, there are nasty integers
which are pseudoprimes in EVERY base a (with (a, n) = 1, of course). They
are called Carmichael numbers. For example, 561 is a Carmichael number.
It is composite (561 = 3 ·11 ·17) and yet for every integer a with (a, 561) = 1
we find that a560 ≡ 1 (mod 560).

A Refinement: Miller’s Test for Primes

Let’s use Fermat’s Theorem to test whether n = 341 might be prime.
We compute 2340 (mod 341). The result is 1, so 341 is either prime or a
pseudoprime to base 2. But now recall a result we proved earlier: if x2 ≡
y2 (mod p) where p is prime, then x ≡ y (mod p) OR x ≡ −y (mod p). In
the special case y = 1 we have x2 ≡ 1 (mod p) implies x ≡ 1 (mod p) or
x ≡ −1 (mod p). So IF 341 is prime then 2340 = (2170)2 ≡ 1 (mod 341)
implies

2170 ≡ ±1 (mod 341).

In fact we find that 2170 ≡ 1 (mod 341), which is consistent with 341 being
prime. But 2170 = (285)2, so if 341 is prime then 285 ≡ ±1 (mod 341).
Compute it; you find 285 ≡ 32 (mod 341). So 341 cannot be prime!

This is the basis of Miller’s Test: you want to test whether an integer
n is prime. Pick some number a and compute an−1 (mod n). If it’s not
1, n is not prime. If the result is 1, AND if n − 1 is divisible by 2 then
compute a(n−1)/2 (mod n). If n is prime the result must be ±1. If it’s not, n
is composite. If it’s −1 then you can’t go any farther with this base a, and
so n is either prime or, if n is composite, n is said to be a strong pseudoprime
to base a. If the result is 1, but (n− 1)/2 is NOT again divisible by 2 then
n, if not actually prime, is also said to be a strong pseudoprime to base a.
If a(n−1)/2 ≡ 1 (mod n) AND (n− 1)/2 is again divisible by 2 then compute
a(n−1)/4 (mod n). It must be ±1 and we do it all again. We continue until
we obtain a result which is NOT ±1 (in which case n is composite) or until
we obtain −1 or find that the exponent is no longer divisible by 2, in which
case n must be prime or is a strong pseudoprime to base a.

Here’s some concrete examples: Let’s first look at 561 in base 2. Compute

2560 ≡ 1 (mod 561),

2280 ≡ 1 (mod 561),

2140 ≡ 67 (mod 561).

15

So 561 must be composite. On the other hand, look at n = 2047 to base 2:

22046 ≡ 1 (mod 2047),

21023 ≡ 1 (mod 2047).

We can’t go any farther, since 1023 isn’t divisible by 2, and so 2047 is either
prime or a strong pseudoprime to base 2. However, in base 3 the number
2047 reveals its compositeness immediately, for 32046 ≡ 1013 (mod 2047).

This illustrates one way to test whether an integer n is prime. Pick some
base a with 1 < a ≤ n− 1 and apply Miller’s Test. If n fails, n is composite.
If n passes then try another base, and another, etc. If n ever fails, n is com-
posite. If n passes every test then it’s highly likely that n is prime. In fact
it can be proved that

Theorem: If n is odd and composite then n passes Miller’s test for AT
MOST (n− 1)/4 bases a with 1 ≤ a ≤ n− 1.

For a proof, see K.H. Rosen, Elementary Number Theory and Its Appli-
cations, Addison-Wesley, 1988, or Koblitz, A Course in Number Theory and
Cryptography, Springer Verlag, 1985.

If we pick a “random” base and n is composite then n has only a 1/4
chance of passing Miller’s Test. If we pick k different random bases indepen-
dently then n has only a 1/4k chance of masquerading as a prime number.
Of course, a true prime will never fail the test.

3 Euler’s Function

Suppose n is a positive integer. We’ll define the function ϕ(n) by

ϕ(n) equals the number of integers k with 1 ≤ k ≤ n and (k, n) = 1.

The function ϕ is called Euler’s function and it has many interesting prop-
erties.

Example 1: If p is prime then ϕ(p) = p−1, since every integer 1, 2, . . . , p−1
is relatively prime to p.

16

Example 2: Let’s compute ϕ(pn) where p is prime and n is some posi-
tive integer. An integer k is relatively prime to pn iff k is not a multiple of p.
Which numbers in the range 1 ≤ k ≤ pn ARE multiples of p? These are the
numbers p, 2p, 3p, . . . (pn−1)p Thus there are exactly pn−1 numbers which are
NOT relatively prime to pn, leaving pn − pn−1 numbers which are relatively
prime to p. For example, ϕ(73) = 73 − 72 = 294.

Example 3: Let’s compute ϕ(pq) where p and q are DISTINCT primes.
List the integers from 1 to pq:

1, 2, 3, 4, . . . , pq.

There are of course pq integers. Strike out all of the integers which are multi-
ples of p; there are q such integers, p, 2p, 3p, . . . , qp. Similarly strike out all the
multiples of q: q, 2q, 3q, . . . , (p− 1)q, but don’t strike out pq again; there are
p− 1 numbers eliminated. Notice that we didn’t strike out anything twice—
there is no number a < pq which is both a multiple of p and a multiple of q if
p ̸= q. How many numbers are left? Exactly pq−p− (q−1) = pq−p− q+1.
This can be simplified slightly by noticing that pq−p−q+1 = (p−1)(q−1).
In fact, since ϕ(p) = p − 1 and ϕ(q) = q − 1, we’ve proved that for distinct
primes p and q it’s true that ϕ(pq) = ϕ(p)ϕ(q).

It’s not coincidence that ϕ(pq) = ϕ(p)ϕ(q). This is merely a special case of

Theorem: If (m,n) = 1 then ϕ(mn) = ϕ(m)ϕ(n).

Proof: Let r1, r2, . . . , rϕ(m) denote the ϕ(m) numbers in the range 1, 2, . . . ,m
which are relatively prime to m, and similarly s1, s2, . . . , sϕ(n) the number be-
tween 1 and n which are relatively prime to n. Consider a number x with
1 ≤ x ≤ mn with (x,mn) = 1. We are going to establish a one-to-one
correspondence between each such x and pairs of the form (ri, sj). Since the
number of such pairs is ϕ(m)ϕ(n), this will prove the theorem.

Let x be given, with (x,mn) = 1. Clearly then (x,m) = 1 and (x, n) = 1.
The first claim is that

x ≡ ri (mod m), (6)

x ≡ sj (mod n). (7)

for one of the ri and sj. If this wasn’t true—if say (ri,m) = d > 1—then
we have d|(x − ri) which would imply that d|x so that (x,m) ≥ d > 1, a

17

contradiction. A similar argument shows that the congruence (7) holds for
some sj. Thus each number x with 1 ≤ x ≤ mn with (x,mn) = 1 can be
associated with a pair (ri, sj).

The converse is also true: given a pair (ri, sj) we can associate this pair
with a unique number x between 1 and mn with (x,mn) = 1 by solving the
simultaneous congruences (6)-(7) for x. Why are these solvable? Well, since
(m,n) = 1 there are some integers x1 and y1 such that nx1 +my1 = 1. But
this implies that

nx1 ≡ 1 (mod m).

Similar reasoning shows that there is some integer x2 such that mx2 ≡
1 (mod n). Now define x̃ = rinx1 + sjmx2. It’s easy to check that x̃ satis-
fies the congruences (6)-(7). Of course x̃ may not lie in the range 1 to mn,
but by taking x = x̃ (mod n) we find that x still satisfies congruences and
1 ≤ x ≤ mn. Also, the number x which satisfies the congruences (6)-(7)
is unique, for if we could find two solutions x and y then we would have
x− y divisible by both m and n, and since (m,n) = 1 we can conclude that
mn|(x−y), impossible if both x and y lie in the range 1 to mn, unless x = y.
Finally, we can check that (x,mn) = 1; if not then we’d have, for example,
(x,m) > 1, which would make equation (6) impossible. Similar remarks show
that (x, n) = 1, so (x,mn) = 1.

So in the end we’ve proved that there is a one-to-one pairing between
each x with 1 ≤ x ≤ mn with (x,mn) = 1 and each pair (ri, sj). But there
are exactly ϕ(m)ϕ(n) such pairs (ri, sj), meaning there are exactly that same
number of x. So ϕ(mn) = ϕ(m)ϕ(n).

The theorem easily extends to the case in which arbitrarily many pair-
wise prime integers are multiplied together, i.e., ϕ(mnr) = ϕ(m)ϕ(n)ϕ(r) if
(m,n) = (m, r) = (n, r) = 1. From this we get a nice formula for ϕ(n) in
terms of the prime power factorization of n. If

n = pα1
1 pα2

2 · · · pαk
k

then
ϕ(n) = (pα1

1 − pα1−1
1)(pα2

2 − pα2−1
2) · · · (pαk

k − pαk−1
k). (8)

This can also be written as

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pk

)

18

For example, if n = 300 then n = 22 ·3 ·52 and so ϕ(n) = (22−2)(2)(52−5) =
80.

Euler’s Theorem

Recall Fermat’s Theorem: if p is prime and (a, p) = 1 then ap−1 ≡
1 (mod p). Of course this isn’t usually true if p is not prime. What is
true is Euler’s Theorem:

For any integers a and n with (a, n) = 1 we have aϕ(n) ≡ 1 (mod n).

Notice that this really is a generalization of Fermat’s Theorem, for if we
take n = p a prime then ϕ(n) = p− 1.

Proof of Euler’s Theorem: This is virtually identical to the proof of Fer-
mat’s Theorem. Let r1, r2, . . . , rϕ(n) be the ϕ(n) positive integers less than n
which are relatively prime to n. Consider the integers

ar1, ar2, . . . , arϕ(n) (mod n).

I claim that these are simply the numbers r1, r2, . . . , rϕ(n) in some rearranged
order. To see this first notice that (ari, n) = 1, since both (a, n) = 1 and
(ri, n) = 1. So each of the numbers ari (mod n) is one of the rj. Also,
it is impossible to have ari = arj unless i = j, for then we would have
a(ri − rj) ≡ 0 (mod n); but since (a, n) = 1 this forces ri ≡ rj (mod n),
impossible since 1 ≤ ri, rj < n (unless i = j). Thus each integer ari is
matched with a unique rj, and the numbers ar1, ar2, . . . , arϕ(n) (mod n) are
just r1, . . . , rϕ(n) in some rearranged order, as claimed. This makes it clear
that

(ar1)(ar2) · · · (arϕ(n)) ≡ r1r2 · · · rϕ(n) (mod n)

or that
aϕ(n)r1r2 · · · rϕ(n) ≡ r1r2 · · · rϕ(n) (mod n).

But since each of the ri are relatively prime to n, we can divide both sides of
this congruence by each of the ri and the result is exactly Euler’s Theorem.

19

4 Applications to Cryptography

Below are detailed two cryptosystems which use simple ideas from number
theory. The first is an exponentiation cipher and the second is the RSA
public key algorithm.

Whatever cryptosystem is used, one must first translate the message into
numbers. You can probably imaging a million ways to do this, but for these
simple examples we’ll pick something very easy: we’ll pretend that the mes-
sages are computer files and we’ll translate the message byte-by-byte using
the ascii values of the characters. So for example, “a” will become 97, “b”
will become 98, etc. Of course this would be terrible in practice, but it
will serve for these examples. In reality one would encode larger blocks of
characters into integers, and it’s easy to imagine incorporating compression,
error correction, or other pre- or post-processing into the scheme. But our
messages will all consist of strings of integers from 0 to 255.

4.1 Exponentiation Ciphers

Here is a cryptosystem which is closely related to the RSA algorithm, but
a bit simpler. It allows persons (traditionally “Alice” and “Bob”) to send
secret messages to each other. They choose a large prime number p and an
“enciphering key” e with the property that (e, p − 1) = 1. Let X be the
plaintext message, that is, the unencrypted message that Bob wants to send
to Alice. X will be a sequence of numbers (from 0 to 255 in our simple
encoding scheme). Bob encrypts the message X by applying the enciphering
operator

E(X) = Xe (mod p)

to X, byte-by-byte, to produce a new string of integers E(X). Alice, upon
receiving the ciphertext E(X), decrypts it by using the deciphering operator

D(Y) = Y d (mod p)

where d, the deciphering exponent, is chosen so that de ≡ 1 (mod p − 1).
Such a d can always be found, since (e, p− 1) = 1; all we have to do is solve
ed+ k(p− 1) = 1 with Euclid’s Algorithm. It’s easy to check that

D(E(X)) ≡ Xed (mod p)

≡ X · (Xp−1)k (mod p)

≡ X

20

where we’ve used de = 1 + k(p − 1) for some k and Xp−1 ≡ 1 (mod p) by
Fermat’s Theorem. Thus D is an inverse for E. Of course applying Fermat’s
Theorem requires (X, p) = 1, so in our case we’d choose p > 256.

In the above scheme Bob and Alice must agree upon the prime p and
enciphering key e. It’s clear that they cannot reveal p and e to anyone else,
for anyone who knows p and e can easily solve de ≡ 1 (mod p) and so find the
deciphering key. Thus this is an example of a private key encryption scheme.

However, they could conceivably reveal the value of p alone without com-
promising the security of the system. Consider a case in which someone
discovers the value of p AND knows a piece of plaintext X and the corre-
sponding ciphertext Y = Xe (mod p). That person seeks to discover the
enciphering exponent e, and so compute d. What this person must do is find
an e such that

Xe ≡ Y (mod p). (9)

Consider the equation Xe = Y where X, Y , and e are real numbers. In this
case we easily solve for e as e = logX(Y). There isn’t any such simple proce-
dure modulo p (more generally, in a finite field). The problem of solving for e
in equation (9) with X and Y known is called the discrete logarithm problem.
It is comparable in difficulty to factoring. The security of an exponentiation
cipher rests on the difficulty of solving this problem in general. It’s not hard
to see that the discrete log problem is easy if p is small—brute force would
work—but if p is large the problem becomes intractable. HOWEVER, even
if p is large there are attacks that can solve this in special cases, e.g., if p− 1
has all small prime factors.

The Massey-Omura Cryptosystem

To use a simple exponentiation cipher as described above, Alice and Bob
have to agree on a prime p and an enciphering key e. Although the prime
can be made public, e cannot, so Bob and Alice will have to agree upon e in
some secure setting.

There is a way to use this system which does not require Bob and Alice
to exchange or develop e in a secure setting. Here’s how it works. Let
the prime p be agreed upon, publicly. Alice chooses and enciphering key
eA and computes the corresponding deciphering key dA by solving eAdA ≡
1 (mod p − 1). She keeps both private, known only to herself. Bob chooses
an enciphering key eB and computes the corresponding dB.

21

If Alice wants to send Bob a message X, she computes XeA (mod p) and
transmits this to Bob. No one who intercepts the message can read it—in
fact, Bob himself can’t even read it! He takes the received message and
exponentiates it again, with eB, to form XeAeB (mod p), which he transmits
back to Alice. Alice hits the (doubly) encrypted message with dA, to form
XeAeBdA ≡ XeB (mod p), and transmits this back to Bob. He then applies
dB to it, computing XeBdB ≡ X (mod p), and so recovers the message Alice
sent him.

One necessity in this cryptosystem is a good signature scheme, that is, a
good way to identify with certainty the sender of a message. We’ll discuss
how to do this later, but suppose the system above were used without any
signatures, and that intruder C intercepts the encrypted message XeA that
Alice sent to Bob. The intruder (who knows p—it’s public) could then ap-
ply his own enciphering exponent eC and return XeAeC to Alice, who, not
knowing that C isn’t Bob, exponentiates again with dA and returns XeC to
intruder C. C of course can compute dC and so XeCdC = X (mod p), and so
decrypt the message intended for Bob.

22

4.2 RSA Public Key Encryption

Public key encryption provides a means for anyone to send you a secret
message, yet no one (not even the person who encrypts the message) can
decrypt it. The basis of the RSA public key scheme is Euler’s Theorem.
Here’s how it works.

As with any type of encryption, we convert the message into a string of
numbers; as above I’ll simply assume that the message is a computer file and
we’ve converted byte-by-byte, so plain English text would be converted into
the ascii equivalent.

In order to provide you the means to send me secret messages, I first
find two large prime numbers p and q, and compute n = pq. I keep p and
q secret, known only to me, but I make n public. I also choose an integer e
with the property that (e, ϕ(n)) = 1. Note that ϕ(n) = (p− 1)(q− 1) is easy
to compute if you know p and q, and it’s also easy to find an appropriate e.
In fact, you could just guess at e and check if (e, (p − 1)(q − 1)) = 1 very
quickly with Euclid’s Algorithm. If the first guess doesn’t work, try again,
etc., until it does. The number e is called the enciphering key. I make this
number public also. In fact, ideally both e and n would be published in some
easy to access central directory.

As with the exponentiation cipher I must compute the deciphering key.
To do this I solve the congruence

ed ≡ 1 (mod ϕ(n)) (10)

for d. I know there’s a solution because I chose e so that (e, ϕ(n)) = 1, and
so there are integers s and t such that se + tϕ(n) = 1, and I can find them
using Euclid’s Algorithm. Then d = s will solve equation (10). The number
d is the deciphering key and must be kept private, known only to me.

Here’s how you send me an encoded message. Assume that the message
has been converted into integers in the manner above (which would be public
knowledge). Let X be a typical integer piece of the message, and let’s assume
that n is large enough so that X < n in all cases. To encipher the message
you compute E(X) where

E(X) = Xe (mod n).

Anyone can do this since n and e are public knowledge. You transmit E(X)
to me; you could even post it in a public place. No one else (not even you!)
can easily decrypt the message. But I can. Recall that ed ≡ 1 (mod ϕ(n)),
or equivalently, ed = 1+kϕ(n) for some integer k. This is the fact that let’s

23

me decrypt the encrypted message. Define the decryption operation D(S)
by

D(S) = Sd (mod n).

I take E(X) that you sent me and compute

D(E(X)) = (Xe)d ≡ Xed ≡ X · (Xϕ(n))k ≡ X (mod n)

where the last step follows since Xϕ(n) ≡ 1 (mod n) by Euler’s Theorem. D
undoes what E did and so I can recover the original message X. Note that
this will only work if we have (X,n) = 1, or equivalently, (X, p) = (X, q) = 1.
The odds of this being true are overwhelming if the primes p and q are large.
Also note that this scheme requires that we pick n large enough so that
we always have X < n; otherwise the message must be broken into smaller
blocks or integers.

Here’s an example. First, I will find two “large” primes. For this example
let’s take p = 71 and q = 101. The product is n = 7171, and ϕ(n) =
70 · 100 = 7000. I’ll choose an enciphering key e = 37; you can easily check
(37, 7000) = 1. Now I have to compute the deciphering key d, i.e., I have to
find a solution to

37d+ 7000t = 1.

You can check (chase Euclid’s algorithm backwards) that d = −3027 works
(with t = 16). Actually, we’d like d to be positive. Taking d = −3027 +
7000 = 3973 doesn’t mess up ed ≡ 1 (mod n). You should think about that.
So the deciphering key is d = 3973.

Let the message be the string “Number theory is fun.” Converting this
to integers using the ascii equivalence gives

X = 78, 117, 109, 98, 101, 114, 32, 116, 104, 101, 111, 114, 121, 32, 105, 115, 32,

102, 117, 110, 46.

We take each integer, raise it to the 37th power, and take the result mod
7171. This results in the string

E(X) = 6128, 227, 3361, 6977, 3030, 4689, 5213, 5930, 6153, 3030, 5363, 4689,

7115, 5213, 3530, 1117, 5213, 2021, 227, 3094, 5552.

This can be safely transmitted to me; anyone who intercepts it will have to
factor 7171 to decrypt it. I now apply the decryption key by raising each
number to the 3973rd power and taking the result mod 7171 to find

D(E(X)) = 78, 117, 109, 98, 101, 114, 32, 116, 104, 101, 111, 114, 121, 32, 105,

115, 32, 102, 117, 110, 46

and so recover the message.

24

4.3 Digital Signatures

An important part of any transmitted message is the digital signature, by
which one can verify the sender’s identity. Suppose someone sends me an en-
crypted message that says “Dr. Bryan, this is General MacArthur speaking.
Attack at dawn.” I’d want to be sure that it really was from MacArthur,
since ANYONE could have encrypted that message with my publicly known
keys. Here’s how the identity verification works.

Like me, General MacArthur would his own public encryption keys, known
to the whole world (but not his deciphering key). Let’s say that I’ve chosen
primes pb and qb to form nb = pbqb, I have enciphering key eb, and deciphering
key db. General MacArthur has corresponding keys ng = pgqg, eg, and dg.
For a message X, thought of as an integer, let my enciphering operation be
by denoted by

Eb(X) = Xeb (mod nb)

and similarly for Eg(X) for MacArthur’s enciphering operation. The deci-
phering operations are Db and Dg, respectively. General MacArthur could
verify his identity as follows: suppose his plaintext orders are the integer
X1. To the end of his orders he appends a string like X2 =“This really is
General MacArthur”, but he first applies his deciphering key to X2 i.e., he
appends Dg(X2) to the end of his plaintext orders—the result, X1 ·Dg(X2),
is his plaintext message followed by a string of gibberish. He then enci-
phers the whole thing by applying Eb and then sends it to me. I receive
Eb(X1) · Eb(Dg(X2)). When I decode the message by applying Db I recover
X1, his plaintext orders, followed by Dg(X2), a string of apparent nonsense.
But when I hit this string of nonsense with Eg (which I can do—ng and eg are
public knowledge) I obtain Eg(Dg(X2)) = Xe2d2

2 ≡ X2 (mod ng) and can now
read the original string X2 = “This really is General MacArthur”. This veri-
fies that the message came from MacArthur, because whoever appended that
string of gibberish to the end of the message must have known MacArthur’s
deciphering key, a number dg which solves dgeg ≡ 1 (mod ϕ(ng)). The only
way to do that is to know the value of ϕ(ng), which is more or less equivalent
to knowing the factorization of ng. That is either MacArthur or someone
who was able to factor ng. The latter possibility is small if pg and qg are
large.

One fine point: this method for sender ID will only work if ng < nb. The
reason is that when MacArthur computes Dg(X2) the result is an integer
between 0 and ng; if this integer is larger than nb then it can’t be transmitted

25

in a single block. If we have ng > nb then the digital signature can still be
done—MacArthur just has to reverse the order of application of Dg and Eb

to X2. Of course, since both ng and nb are publicly known, I’d know the
order in which he applied them and decrypt accordingly.

4.4 More on Signatures; Hash Functions

The signature scheme as presented above isn’t very secure. For example, sup-
pose that I, after receiving the encrypted message from MacArthur, decrypt
it to obtain X1 · Dg(X2). I remove X1 and now I have MacArthur’s digital
signature Dg(X2). I could append this to any message I want to and so pass
myself off as MacArthur! In fact, anyone who receives a message which has
been electronically signed by MacArthur could do this.

Alternatively, the encoded message Eb(X1) · Eb(Dg(X2)) might be inter-
cepted by an enemy in transit. If the enemy could identify that part of the
message corresponding to the encrypted plaintext, Eb(X1), then the enemy
could replace that portion of the message with Eb(Y1) (where Y1 is the false
order “Attack at sunset”), reappend Eb(Dg(X2)), and send the message on
its way to me. Note that the enemy can easily compute Eb(Y1) since this
uses public information. We need a way to prevent these kinds of tampering.

What we want is a way “bind” MacArthur’s signature and the original
message together, in such a way that no one can strip off the signature and
reuse it, and no one can tamper with the message itself (without me detecting
it). There is such a scheme, based on the idea of a hash function.

Hash functions (or “hashing”) have applications far beyond cryptography,
and there is a huge literature on the subject. Without going into this, we
can describe the essential properties that a hash function should have for
cryptographic purposes. A good cryptographic hash function f should

1. Take an input integer string X of arbitrary length and produce a fixed
length output f(X) (typically a few tens to a few hundred bits).

2. Be easy and fast to compute.

3. It should be totally infeasible to find an input X that hashes to a given
value h, i.e., solving f(X) = h for X should be infeasible. Even finding
two inputs X and Y that hash to the same value (so f(X) = f(Y))
should be infeasible.

26

4. Although this is in some sense implied by the previous property, any
small change in the input X, even one bit, should change the output
f(X).

Here’s how one uses a hash function to improve our signature scheme
above and bind the message to the signature. Assume we have a good hash
function f . Let the plaintext message be denoted by X. The signature is
no longer an arbitrary string (“This is really MacArthur”), but rather the
signature will be f(X). MacArthur forms X · Dg(f(X)) and then encrypts
with my public key to form Eb(X) ·Eb(Dg(f(X))). This he transmits to me.
On receiving the message I

1. Apply Db to recover the plaintext message X and Dg(f(X)).

2. Apply Eg to Dg(f(X)) to recover f(X).

3. I apply the (publicly known) hash function to the plaintextX I received
and compare this value to f(X) as computed in step (2). If they match
I can conclude that the message really was sent by MacArthur and was
not altered in transit.

It’s worth considering a few scenarios in which someone tries to steal
MacArthur’s signature or alter the message in transit. For example, what
if someone tries to change the message meant for me, substituting a new
message X ′ in place of X? I will then receive Eb(X

′)·Eb(Dg(f(X))). I use Db

to recover the altered message X ′. I then apply Eg to the signature to recover
f(X). Finally, I apply f to the plaintext X ′ I received to compute f(X ′) and
compare to the decrypted signature f(X). Almost certainly f(X) ̸= f(X ′)
and I conclude that X ′ is not the message that Dg was applied to—so it can’t
be the message as MacArthur sent it.

In a similar vein, what if I stripped off the signature Dg(f(X)), tried to
append it to a message X ′ of my choosing, and then send it to someone else
(thereby attempting to impersonate MacArthur)? Assuming the message
was encrypted with this person’s public keys, this person uses his or her
private key to recover X ′ · Dg(f(X)). Applying Eg to the signature and f
to the plaintext X ′ shows just as before that the message is a forgery, for
f(X) ̸= f(X ′). The application of the hash function to the message followed
by the application of one’s private key inextricably binds the message and
signature together.

27

4.5 Certifying Authorities and Certificates

How can you know anyone else’s public key? Presumably such information
could be posted in a directory somewhere, or you could get it directly from
the person. In any case, such information is necessary for verifying someone
else’s identity in the signature scheme above, and of course the information
must be reliable. But it is possible that some miscreant could deliberately
propogate false information about other people’s public keys—perhaps alter
an insecure database, or intercept and alter in transit a request for someone’s
public keys. By doing so the culprit could make you believe that Alice’s
public key is given by the pair n1, e1, when in fact the correct key is n2, e2.
The culprit can then masquerade as Alice (at least to you). How can public
keys be distributed in a secure manner, so that no one can alter them and
those who use them can be assured they are correct? This is the role of a
certifying authority.

The certifying authority has its own public keys, say na and ea, and pri-
vate key da. The public keys are made VERY public—probably even built
into encryption software, so that everyone knows what they are. The certifi-
cation authority has the job of verifying that a given user has specified public
keys, say nb and eb. Here’s how: The key authority constructs a “message”
X which contains nb, eb, the user’s name, and any other relevant information
about the user. The key authority then computes C = Xda (mod na). The
number C is a certificate which attests to the fact that the given user really
has authorization to use the given keys. If the keys nb, eb belong to me, I
can include the certificate C in any message I send to someone else. That
person can hit C with the public key of the certifying authority to recover
the information it contains, namely my keys, name, and whatever other in-
formation is in C. Only someone with the key authority’s deciphering key da
could have encrypted that information into C, and presumably that was the
certifying authority. Thus the security of the whole system ultimately rests
on trust in the certifying authority.

28

