
Random Variable Facts

Continuous Random Variables

Let X be a continuous real-valued random variable, i.e., any sample of X
yields a real number. I’ll use the notation P (event) to denote the probability
that “event” occurs. The probability density function (pdf) f(x) for X is that
function for which

P (a < X < b) =
∫ b

a

f(x) dx. (1)

Of course we require that f ≥ 0 and that f integrates to 1 over the whole real
line. This forces f(x) to approach zero as x goes to plus or minus infinity.

The cumulative distribution function (cdf) F (x) for X is defined by

F (b) = P (x < b).

But this implies that

F (b) =
∫ b

−∞
f(x) dx

and differentiating both sides (and using that f limits to zero) shows that
F ′ = f , i.e., F is an anti-derivative for f .

Change of Variables

Suppose that X is some real-valued random variable with pdf f and cdf F .
Let Y = φ(X) for some function φ. Then of course Y is also a random variable,
and you can compute the pdf and cdf for Y from φ and f (or F ).

To do this let’s assume that φ is invertible on its range, so that if y = φ(x)
we have x = φ−1(y). In fact, let’s suppose also that φ is strictly increasing, so
that x < y if and only if φ(x) < φ(y). Thus, for example, we won’t deal with
φ(x) = x2 here, but φ(x) = ex or φ(x) = ln(x) are OK. Actually φ(x) = x2 is
also OK too if the domain of φ is limited to x ≥ 0.

Let ψ denote the inverse function for φ. Start with the statement

P (a < X < b) =
∫ b

a

f(x) dx.

Now if Y = φ(X) then a < X < b is equivalent to φ(a) < Y < φ(b), so we have

P (φ(a) < Y < φ(b)) =
∫ b

a

f(x) dx.

Let c = φ(a), d = φ(b), or equivalently, a = ψ(c) and b = ψ(d). The above
equation becomes

P (c < Y < d) =
∫ ψ(d)

ψ(c)

f(x) dx.
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Do a change of variable in the integral: Let y = φ(x), so x = ψ(y) and dx =
ψ′(y) dy. The change of variables yields

P (c < Y < d) =
∫ d

c

f(ψ(y))ψ′(y) dy.

Compare the above equation to (1): This shows that the pdf for Y is the func-
tion g(y) = f(ψ(y))ψ′(y). Taking an anti-derivative shows that the cdf for Y is
G(y) = F (ψ(y)).

Mean, Variance, Central Limit Theorem

The mean µ (or expected value E(X)) of a continuous random variable X
is defined by

µ = E(X) =
∫ ∞

−∞
xf(x) dx.

Informally, the mean is the “average” value the random variable takes. The
variance (V (X) or σ2) is defined by

V (X) = σ2 =
∫ ∞

−∞
(x− µ)2f(x) dx

and measures the “spread” of the random variable. It’s actually possible for the
mean and/or variance of a random variable to be infinite, although we won’t
encounter such pathologies.

As it turns out, if X1, . . . , Xn are independent random variables then

E(X1+· · ·+Xn) = E(X1)+· · ·+E(Xn), V (X1+· · ·+Xn) = V (X1)+· · ·+V (Xn).

Also, E(cX) = cE(X) and V (cX) = c2V (X) for any constant c.
Let X1, · · · , Xn be independent random variables, all with the same distri-

bution, finite mean µ and variance σ2. The central limit theorem says that if
we define a random variable

Z =
X1 + · · ·+ Xn − nµ√

n

then in the limit that n goes to infinity Z is a standard normal random variable,
that is, Z has pdf

f(x) =
1√
2π

e−x2/2.

A standard normal random variable has mean 0 and variance 1.
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