
Quasi-Newton Methods
MA 348

Kurt Bryan

Newton’s Method Pros and Cons

Newton’s method has some very nice properties: It’s extremely fast, at least once it gets
near the minimum, and with the simple modifications we made it becomes a descent method
that seeks out minima instead of general critical points.

But Newton’s method has some drawbacks, too. The most annoying is that we need all
of the second partial derivatives, which may be difficult to compute. Also, standard solvers
require O(n3) operations to solve H(xk)hk = −∇f(xk), which could be time consuming.
And of course, we also have to store the Hessian matrix, which requires O(n2) memory.

Conjugate gradient techniques overcame these problems, although there is a price: New-
ton’s Method is quadratically convergent, but in general conjugate gradient methods do
NOT converge quadratically.

We’ll now look at yet another popular class of unconstrained nonlinear optimization
methods, so-called Quasi-Newton methods. Like conjugate gradients, these methods are se-
quential “line search” algorithms which do a good job on quadratic objective functions (and
hence, we hope, on smooth non-quadratic functions). They can be viewed as a variation of
Newton’s method that retain good convergence properties, but don’t require difficult Hessian
computations and linear solves.

Quasi-Newton Methods

Like the other algorithms we’ve seen, Quasi-Newton methods are iterative, involving a
series of line searches, and generally involve computations only of f and ∇f at each iteration.
In fact the only thing that distinguishes them (or any of the algorithms we’ve looked at)
is how the search direction is chosen. At the kth stage of the algorithm we will compute
a certain matrix Hk; this computation will be fast and easy. The matrix Hk is supposed
to be an approximation to H−1(xk), the inverse of the Hessian of f at the current iterate,
although some approaches approximate the Hessian itself. By approximating H−1 we don’t
need to solve the linear system H(xk)hk = −∇f(xk), but instead simply multiply to find
search direction hk = −Hk∇f(xk).

The basic form of the algorithm is much like Newton’s method, and goes like this:

1. Make an initial guess x0 at the minimum; set k = 0. Initialize H0 = I, the n by n
identity matrix (or maybe some other appropriate positive definite matrix).

2. Compute ∇f(xk) and take the search direction as hk = −Hk∇f(xk) (in straight
Newton’s method we’d take hk = H−1(xk)∇f(xk)).

1



3. Do a line search from xk in the direction hk and take xk+1 = xk + t∗hk, where t∗

minimizes f(xk + thk). (In straight Newton we’d use t∗ = 1 always, but we could also
do a line search). Do some termination test to see if we’re done.

4. Compute Hk+1 by modifying Hk appropriately. This is usually done by setting Hk+1 =
Hk +Uk, where Uk is some easy to compute “updating” matrix. Set k = k + 1 and
go to step 2.

Of course, the key step is the update from Hk to Hk+1.
As mentioned above, the idea is that Hk should be an approximation to H−1(xk). We

want the matrices Hk to contain the “essential features” of H−1(xk) without the expense of
actually computing or inverting the Hessian. These essential features are described below.

• Symmetry: The Hessian matrix is symmetric, and hence so is the inverse (try proving
this), so it seems reasonable to insist that Hk should be symmetric. If the update Uk

is symmetric then Hk+1 will inherit symmetry from Hk.

• Quasi-Newton Condition: Consider for a moment the special case in which f is
quadratic with constant Hessian H, hence of the form f(x) = 1

2
xTHx + xTb + c. In

this case ∇f(x) = Hx + b. It’s easy to check that for any vectors x and y in lRn we
have

x− y = H−1(∇f(x)−∇f(y)). (1)

We will require the matrix Hk+1 that we construct to satisfy the condition (1) as if
Hk+1 were itself the inverse of the Hessian. However, we won’t require equation (1)
to hold for every possible pair of x and y (probably no matrix satisfies this if f is
non-quadratic, and only the true inverse of H is f is quadratic). Instead, we’ll require
that Hk+1 satisfy equation (1) in the case that x = xi+1 and y = xi for i = 0 to i = k,
that is,

xi+1 − xi = Hk+1(∇f(xi+1)−∇f(xi))

for 0 ≤ i ≤ k. This is the quasi-Newton condition.

Note that at the time we want to compute Hk+1 we already have in hand the iterates
x0, . . . ,xk.

In what follows let’s define

∆xi = xi+1 − xi, ∆gi = ∇f(xi+1)−∇f(xi).

The quasi-Newton condition can then be written as

∆xi = Hk+1∆gi (2)

for 0 ≤ i ≤ k.

2



• Positive-Definiteness: It would be highly desirable if the matrices Hk were positive
definite (which also guarantees that H−1

k is positive definite). By the reasoning we’ve
used before, hk will then be a descent direction.

So that’s the task: Construct Hk so that it’s symmetric and satisfies the quasi-Newton
condition; as it turns out, we’ll get positive definiteness for free! We’d like to use only func-
tion and gradient evaluations at xk (or maybe prior points too) to do this.

Quadratic Functions; An Example

If the function f in question is in fact quadratic in n variables with Hessian matrix H
then it can be shown that any method for computing a symmetric Hk in accordance with
the quasi-Newton condition (2) yields an algorithm which (with exact line searches) will
minimize f in at most n line searches. In fact, the directions hk generated by the algorithm
will be H-conjugate, so the quasi-Newton algorithm is also a conjugate direction algorithm.
From Theorem 2 in the Conjugate Gradients handout this proves that n line searches suffice
to locate the minimum. Since quasi-Newton methods perform well on quadratic functions,
they should also perform well on more general functions.

Here’s an example in the case n = 2. Let the function f be given by f(x) = 1
2
xTHx+xTb

with

H =

[
3 1
1 2

]
, b =

[
1
2

]
.

We begin with initial guess x0 = [2, 1]T and H0 as the two by two identity. We then obtain
search direction h0 = −H0∇f(x0) = [−8,−6]T . A line search to minimize f(x0 + th0) =
180t2 − 100t+ 13 in t yields minimum at t = 5/18, and the next iterate is x1 = x0 +

5
18
h0 =

[−2/9,−2/3]T .
Up to this point it’s just steepest descent. Now we need to find an updated Hessian H1.

It must be symmetric, so that

H1 =

[
h11 h12

h12 h22

]
.

The Quasi-Newton condition also comes into play. We have

∆x0 = x1 − x0 =

[
−20/9
−5/3

]
, ∆g0 = ∇f(x1)−∇f(x0) =

[
−25/3
−50/9

]

The Quasi-Newton condition (note k = 0 still, so we only need to consider the case i = 0 in
equation (2)) yields equations

−25

3
h11 −

50

9
h12 = −20

9
, −25

3
h12 −

50

9
h22 = −5

3
.

3



This is two equations in three unknowns, so we ought to have a free variable. Indeed, we
may take h11 arbitrarily. With h11 = 1 we find h12 = −11/10 and h22 = 39/20. We then
have

H1 =

[
1 −11/10

−11/10 39/20

]
.

The next iteration proceeds as follows: The new search direction is h1 = −H1∇f(x1),
and we find that h1 = [37/45,−37/30]T . Then f(x1 + th1) =

1369
900

t2 − 37
45
t− 8

9
has minimum

at t = 10/37. The next estimate of the minimum is x2 = x1 +
10
37
h1 = [0,−1]T , which IS the

exact minimum.
The example above illustrates the fact that the Quasi-Newton approach minimizes a

quadratic in n variables using n (or fewer) line searches. It’s also worth noting that although
we chose h11 in H1 arbitrarily, it wouldn’t have made any difference. We’d still get to the
minimum on the next iteration.

Problems 1:

1. Run through the example above but make a different choice for h11.

2. Modify the proof of Theorem 3 in the Conjugate Gradients handout to show that the
directions generated by a quasi-Newton method (for a quadratic f with Hessian matrix
H) are in fact H-conjugate.

Some Specific Quasi-Newton Methods and the Non-Quadratic Case

The Quasi-Newton condition looks like a pain to implement, for even in the quadratic
case at the kth stage of the algorithm we obtain (possibly) nk equations which must be
satisfied by the entries of Hk+1. By the time k ≈ n solving these equations is about O(n3)
work.

But in fact many Quasi-Newton strategies show how to construct Hk+1 “painlessly”, with
no solves, so that the Quasi-Newton condition is satisfied. One of the most famous is the
DFP (Davidson, Fletcher, and Powell) update, in which we take Hk+1 = Hk +Uk where

Uk =
∆xk∆xT

k

∆xT
k∆gk

− (Hk∆gk)(Hk∆gk)
T

∆gT
kHk∆gk

. (3)

Despite the complicated appearance of the formula, it’s just mindless algebra and a bit of
induction to show that in the quadratic case DFP yields a matrix Hk+1 which satisfies the
Quasi-Newton condition (2).

Problem 2: Show the DFP update satisfies the Quasi-Newton condition (2) in the spe-
cial case i = k, that is, show

∆xk = Hk+1∆gk

4



with Uk chosen as above and Hk+1 = Hk +Uk. By the way, it doesn’t matter whether or
not f is quadratic here.

I won’t give the induction proof that DFP yields matrices Hk+1 that satisfy (2) for 0 ≤ i ≤ k
in the quadratic case. See An Introduction to Optimization by Chong and Zak for the proof.

Note, however, that the DFP update (3) makes perfect sense for non-quadratic functions.
We may thus apply it to such functions in the hope that (since such functions are locally
quadratic) the method will converge like Newton’s method. Below is an example to show
the results of using the DFP algorithm on Rosenbrock’s function, with initial guess (−1,−1)
and exact line searches (Golden section). Notice that by taking H0 = I, the first step will
be simply steepest descent. In this case the algorithm converges in 12 iterations.

–1.5

–1

–0.5

0.5

1

1.5

x2

–1.5 –1 –0.5 0.5 1 1.5x1

Another formula, generally favored over DFP, is the BFGS (Broyden, Fletcher, Goldfarb,
and Shanno) update, which is

Uk =

(
1 +

∆gTk Hk∆gk
∆xT

k∆gk

)
∆xk∆xT

k

∆xT
k∆gk

− Hk∆gk∆xT
k + (Hk∆gk∆xT

k )
T

∆xT
k∆gk

. (4)

Again, it’s just mind-numbing algebra to verify that this satisfies the quasi-Newton condition
in the quadratic case.

Problems 3:

1. Verify that the BFGS formula satisfies the quasi-Newton condition in the case i = k.

2. Show that Uk is symmetric for both the DFP and BFGS methods, so that Hk+1 is
symmetric if Hk is.

5



It can be shown for both DFP and BFGS that if the line searches are done exactly then
Hk+1 is positive definite if Hk is, so the search directions will always be descent directions.
Again, see Chong and Zak for a proof.

Here is an example showing the BFGS algorithm under the same conditions:

–1.5

–1

–0.5

0.5

1

1.5

x2

–1.5 –1 –0.5 0.5 1 1.5x1

It converges in 14 iterations.

More Stuff

The BFGS update is the most favored approach to quasi-Newton methods. It has some
subtly better properties as far as round-off is concerned and is better behaved if the line
searches are not exact.

Notice that the quasi-Newton methods as presented above DON’T get rid of the O(n2)
storage problem for the Hessian, but do get rid of the O(n3) Cholesky factorization issue.

However, as mentioned above, many approaches to quasi-Newton methods approximate
H(xk) directly, instead of the inverse. As a result we still have to solve an n by n linear
system Hkhk = −∇f(xk) at every iteration; it seems like such an approach gives away
one of the main advantages of quasi-Newton methods. However, because the matrix Hk+1

is constructed in a simple way from a prior matrix Hk, and assuming we have done a
Cholesky factorization Hk = LT

kDkLk, we can relatively easily (in O(n2) operations) use this
to compute a Cholesky factorization of Hk+1, and so use previous work to more easily solve
Hkhk = −∇f(xk). We won’t discuss such issues here.

6


