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The Classical Particle in a Box

Consider a particle of mass m constrained to move along the x axis under
the influence of some potential function V (x, t), where t is of course time.
The force on the particle at any time is −∂V

∂x
(x, t). From Newton’s second

law F = ma the classical model for the particle’s motion is

mẍ(t) +
∂V

∂x
(x(t), t) = 0 (1)

where x = x(t) is the position of the particle at any time. With appropriate
initial conditions (position, velocity) we can solve the second order DE (1)
to find the particle’s position at any later time.

It’s worth noting that the total energy E(t) of the particle at any time,
kinetic plus potential, is given by

E(t) =
1

2
mẋ2(t) + V (x(t), t) (2)

It’s easy to check that if equation (1) holds and V is independent of t then
dE
dt

= 0, so the total energy is conserved.

The Quantum View

In quantum mechanics the particle’s physical state is governed by a wave
function ψ(x, t). The function ψ(x, t) is complex-valued, and one interpreta-
tion of ψ is as a probability density. Specifically, if we measure the position
of the particle at time t then the probability of finding the particle between
x = a and x = b is given by ∫ b

a

|ψ(x, t)|2 dx. (3)

Of course this means that ∫ ∞

−∞
|ψ(x, t)|2 dx = 1 (4)
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at all times.
The function ψ(x, t) is a solution to Schrödinger’s equation,

i~
∂ψ

∂t
+

~2

2m

∂2ψ

∂x2
= V ψ (5)

where V is the potential function (real-valued). Of course the condition (4)
forces

lim
x→−∞

ψ(x, t) = lim
x→∞

ψ(x, t) = 0 (6)

at all times t. The same holds true for the spatial derivatives of ψ.
Note that equation (5) is linear, so that any solution can be re-scaled by

multiplying by an appropriate constant to satisfy equation (4) at any specific
time. Moreover, once normalized for any given time, the solution will stay
normalized for all later times, for

d

dt

∫ ∞

−∞
|ψ(x, t)|2 dx =

d

dt

∫ ∞

−∞
ψ(x, t)ψ(x, t) dx

=

∫ ∞

−∞
(ψt(x, t)ψ(x, t) + ψ(x, t)ψt(x, t)) dx

=

∫ ∞

−∞
((
ih

2m
ψxx −

i

h
V ψ)ψ + (− ih

2m
ψxx +

i

h
V ψ)ψ) dx

=
ih

2m

∫ ∞

−∞
(ψxxψ − ψxxψ) dx (7)

where we’ve made use of equation (5) to substitute out ψt and ψt (and slipped
the time derivative inside the integral, which is permitted if ψt exists and is
reasonably well-behaved). If we now integrate by parts in x in each term in
equation (7) and use equation (6) (to take a derivative off of ψxx, put it onto
ψ) we obtain

d

dt

∫ ∞

−∞
|ψ(x, t)|2 dx =

ih

2m

∫ ∞

−∞
(|ψx|2 − |ψx|2) dx = 0.

Once ψ has been normalized as in equation (4) for any time t, it will remain
normalized.

Observables and Operators
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If we measure the position of the particle at any time, we don’t obtain a
deterministic result. The position of the particle is a random variable with
density function |ψ|2(x, t); if we imagine a large ensemble of independent
particles all of which are in “identical” states (i.e., have the same wave func-
tion), position measurements on any given system will yield random values
with density function |ψ(x, t)|2. The expected value < x > of the position
measurement (if taken at time t) comes straight from standard probability
theory and is given by

< x >=

∫ ∞

−∞
x|ψ(x, t)|2 dx. (8)

Of course if position is not deterministic then it isn’t clear how velocity
should be defined. Nevertheless, we can try to define velocity as the derivative
of < x > with respect to t; velocity itself then becomes a kind of random
variable. From equation (8) we can compute

d < x >

dt
=

d

dt

∫ ∞

−∞
x|ψ(x, t)|2 dx

=
ih

2m

∫ ∞

−∞
x(ψxxψ − ψxxψ) dx (9)

where equation (9) follows in almost exactly the same manner as equation
(7)—there’s just an extra “x” along for the ride under the integral. If we
integrate each term by parts above, to take a derivative off of ψxx or ψxx

and put the derivative onto xψ or xψ, we find (after some cancelation, and
assuming that ψ and its derivatives vanish at infinity) that

d < x >

dt
=

i~
2m

∫ ∞

−∞
(ψψx − ψxψ) dx (10)

Integrate the first term by parts again, to transfer the x derivative onto ψ to
find that

d < x >

dt
= −i~

m

∫ ∞

−∞
ψψx dx. (11)

Actually, it’s more conventional to work with momentum p = mv, rather
than velocity. In this case we might write < p >= md<x>

dt
and obtain

< p >= −ih
∫ ∞

−∞
ψψx dx. (12)
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This is the expected value of the momentum of the particle.
Finally, though, let’s write both of equations (8) (expected position) and

(12) (expected momentum) in the more telling forms

< x > =

∫ ∞

−∞
ψxψ dx (13)

< p > =

∫ ∞

−∞
ψ

(
~
i

∂

∂x

)
ψ dx (14)

Given a function ϕ ∈ L2(−∞,∞), let M denote the densely defined
unbounded operator Mϕ = xϕ(x), and let D denote the densely defined un-
bounded operator Dϕ = ~

i
dϕ
dx
. Equation (13) states that in order to compute

< x > at any time we should take the wave function ψ for the system, apply
the operator M (in the x variable), then take the inner product of Mψ with
ψ. In short, equation (13) can be abbreviated

< x >=< Mψ,ψ > (15)

in standard mathematical Hilbert space notation. The operator M is called
the “position operator”. In the same vein, equation (14) states that < p >
is computed by applying the “momentum operator” D to ψ, then taking an
inner product with ψ. Thus

< p >=< Dψ,ψ > . (16)

Actually, physicists prefer the so-called “bracket” notation, and would
write < x >=< ψ|M |ψ > or just < x >=< ψ|x|ψ >, and < p >=< ψ|D|ψ >
or < p >=< ψ|~

i
∂
∂x
|ψ >.

Equations (15) and (16) illustrate one of the most important facets of
quantum mechanics: classical physical quantities are replaced with oper-
ators (generally densely defined and unbounded) that operate on a sys-
tem’s wave function to produce expected values of the system’s observables.
Schrödinger’s equation dictates the time evolution of the wave function for
the system.

It’s also worth noting that we can not only compute expected values, but
also variances. For example, we can compute the second moment Sxx of the
position random variable as

Sxx =< x2 >=

∫ ∞

−∞
x2|ψ(x, t)|2 dx (17)
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which is really just the statement that Sxx =< M2ψ, ψ >. Then the tradi-
tional variance of the position becomes σ2

x = Sxx− < x >2. Similarly we can
compute the second moment of the momentum as

Spp =< p2 >=< D2ψ, ψ >=

∫ ∞

−∞
ψ

(
−~2

∂2

∂x2

)
ψ dx (18)

from which we compute σ2
p = Spp− < p >2.

More generally, any physical quantity y associated to the system that can
be constructed as a polynomial combination y = Q(x, p) has expected value

< y >=< Q(M,D)ψ, ψ >=

∫ ∞

−∞
ψQ(x,

~
i

∂

∂x
)ψ dx. (19)

For example, kinetic energy, which can be expressed as 1
2m
p2, is associated

with the operator − 1
2m

~2 ∂2

∂x2 .
Finally, it’s worth noting that an observable always assumes a real value.

As such, for any observable y with corresponding operator Y we have < y >=
< y >, so that

< y >=< Y ψ, ψ >= < Y ψ, ψ > =< ψ, Y ψ > .

That is, the operator Y must be Hermitian or self-adjoint. You can easily
check that both M and D are self-adjoint.

An Example: The Infinite Square Well

Consider a particle of mass m in an “infinite square well”, say on the
interval I = (0, 1). What this means is that the potential function V (x, t)
is defined to be zero for x ∈ I, and V (x) = ∞ for x outside of I. The
interpretation of this is that outside I we have a zero chance of finding the
particle (since it would have to have acquired infinite energy to get there),
and so we require ψ ≡ 0 for x not in I. We’ll talk about the boundary
conditions in a moment.

We thus seek a solution to Schrödinger’s equation on the interval (0, 1).
Separate variables as ψ(x, t) = α(t)β(x), plug into equation (5) with V ≡ 0,
and separate to find

i
αt

α
= − ~

2m

βxx
β

= E
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for some constant E > 0 (or else we have no hope of obtaining Dirichlet or
Neumann boundary conditions). The solution for α(t) and β(x) is

α(t) = C1e
iEt (20)

β(x) = C2 sin(qx) + C3 cos(qx) (21)

where C1, C2, C3 are arbitrary constants and q =
√

2mE/~ (so E = ~q2
2m

.)
Now for the boundary conditions: we’ll use ψ(0, t) = ψ(1, t) = 0 at all

times. You can derive that these are the “correct” boundary conditions by
replacing the condition V = ∞ outside I by V = A <∞ and examining the
behavior of ψ at the boundaries as A → ∞. I don’t want to do that right
now—it will distract from the main point!

And the main point is this: with zero Dirichlet boundary conditions we
are forced to take C3 = 0 in equation (21), with q = kπ for some integer
k. This means that E = ~k2π2

2m
and any separable solution to Schrödinger’s

equation is of the form

ψk(x, t) = ei
~k2π2

2m
tϕk(x) (22)

for some integer k, where ϕk(x) =
√
2 sin(kπx) (the

√
2 is so that ∥ϕk∥2 = 1).

The general solution is given by

ψ(x, t) =
∞∑
k=1

cke
i ~k

2π2

2m
tϕk(x) (23)

where the ck can be determined from the initial condition. In fact, if ψ(x, 0) =
f(x) then we take

ck =

∫ 1

0

f(x)ϕk(x) dx. (24)

The ck might be real, but ψ(x, t) will always be complex-valued due to the

ei
~k2π2

2m
t factor. Note also that ei

~k2π2

2m
t is purely oscillatory and never decays

away (in contrast to say, the heat equation).
Let’s compute the < x >, σx, < p >, and σp for such a particle. We’ll

take initial wave function f(x) =
√
2
2
sin(πx) + 1

2
sin(2πx)− 1

2
sin(4πx) (note

|f |2 is normalized). This yields wave function

ψ(x, t) =

√
2

2
e

i~π2t
2m sin(πx) +

1

2
e

2i~π2t
m sin(2πx)− 1

2
e

8i~π2t
2m sin(4πx). (25)
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The square of the initial wave function amplitude at time t = 0 (with
~ = m = 1, for simplicity) looks like
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At times t = 0.01, 0.02, 0.03, 0.04, 0.05 the squared amplitude of the wave
function looks like
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The figure on the left below shows that expected value< x > as a function
of time, while the figure on the right shows the standard deviation σx over
time:
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The actual formula for < x > is

< x >=
1

2
− 8

√
2

9π2
cos

(
3~π2t

2m

)
+

16
√
2

225π2
cos

(
15~π2t

2m

)
and isn’t terribly enlightening. The formula for σx is messier. We can also
compute and plot < p > and σp over time, to obtain
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The Uncertainty Principle

It’s easy to see that σ2
x ≥ 0 always, for σ2

x =< M2ψ, ψ > − < Mψ,ψ >2,
so (using ∥ψ∥ = 1 and M self-adjoint)

σ2
x = < M2ψ, ψ > −(< Mψ,ψ >)2

≥ < Mψ,Mψ > −∥Mψ∥2

= 0

where I’ve used Cauchy-Schwarz in the form < Mψ,ψ >≤ ∥Mψ∥∥ψ∥ =
∥Mψ∥. In fact, replace M by ANY self-adjoint operator Y to find σ2

y ≥ 0.
In particular, the same statement holds for momentum.

But in fact one can make a “joint” statement regarding the magnitude
of σx and σp. Amazingly, this comes about from the innocuous fact that D
and M do not commute. In fact, you can (and should) check that

DM −MD = ~I (26)

where I is the identity operator. In what follows let us for simplicity just
consider the case in which < x >=< p >= 0, which isn’t too restrictive (we
can always rescale position and velocity linearly so this is true, and it doesn’t
change the variances). In this case we have

σ2
x =

∫ ∞

−∞
x2|ψ(x, t)|2 dx = ∥Mψ∥2. (27)

Also

σ2
p = −h2

∫ ∞

−∞
ψ(x, t)

∂2ψ

∂x2
dx = h2

∫ ∞

−∞

∂ψ

∂x

∂ψ

∂x
dx = ∥Dψ∥2 (28)

after an integration by parts. We then have

~ = ~∥ψ∥2

= ~| < ψ,ψ > |
= | < (DM −MDψ,ψ > |
= | < DMψ,ψ > − < MDψ,ψ > |
= | < Mψ,Dψ > − < Dψ,Mψ > |
≤ 2∥Mψ∥∥Dψ∥
= 2σxσp
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where I used the triangle inequality, Cauchy-Schwarz, and equations (27) and
(28). Thus

~
2
≤ σxσp (29)

which is the simplest version of the famous Heisenberg Uncertainty Princi-
ple. Note that the same computation works for ANY two observables with
operators that do not commute. And if the operators a and b DO commute,
the computations above will leave us empty handed with the uninteresting
assertion σaσb ≥ 0!

However, not every observable yields uncertain values when measured.
Consider the same particle in a box as above, but with initial configuration
ψ(x, 0) =

√
2 sin(2πx). It’s straightforward to compute that

< x > = 1/2

σ2
x =

2π2 − 3

24π2

< p > = 0

σ2
p = 4π2~2.

Nothing remarkable here—both position and momentum (as random vari-

ables) have non-zero variance (note also that σpσx =
√
12π2−18~

6
≈ 1.67~ >

~/2, in accordance with the uncertainly principle. But if we use E to denote
energy, with associated operator − ~2

2m
∂2

∂x2 , we find

< E > =
2π2~2

m
σ2
E = 0.

The energy of this system has NO variance—it will yield the same value each
time!
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