
Improving Newton’s Method
MA 348

Kurt Bryan

Introduction

Recall Newton’s method for minimizing f(x):

1. Make an initial guess x0, set k = 0.

2. Solve the linear system
H(xk)hk = −∇f(xk)

for the step hk. (This comes from approximating f as a quadratic function, f(x) ≈
f(xk) + hT∇f(xk) +

1
2
hTH(xk)h where h = x − xk, and finding the critical point

h = hk of the approximating quadratic.)

3. Set xk+1 = xk +hk; if hk is small (or |∇f(xk)| is small) then terminate with minimum
xk+1; otherwise increment k = k + 1, and repeat step 2.

Newton’s method is exact on quadratic functions: it will find the minimum (or critical point)
in one iteration.

More generally, Newton’s method can be shown to converge quadratically on “nice”
functions. Specifically, if f has continuous third derivatives, and if H(x∗) is positive definite
at the minimum x∗, and if the initial guess x0 is close enough to x∗, then

|xk+1 − x∗| ≤ c|xk − x∗|2

for some constant c. This is extremely fast convergence.
However, Newton’s method as presented above will just as happily find ANY critical

point of f , whether a max, min, or saddle. And unfortunately, “most” critical points are not
minima. Thus it would be nice to modify Newton’s method to bias it toward finding critical
points which are actually minima.

We’ll make a small modification to Newton’s method to encourage it to head for a mini-
mum. First, recall that a matrix M is said to be positive definite if vTMv > 0 for all nonzero
vectors v. Second, recall the method of steepest descent: at a given iteration at some base
point xk we compute a search direction hk = −∇f(xk). This search direction is guaranteed
to be a descent direction, in the sense that if we leave xk along the line L(t) = xk + thk then
as t increases the function value decreases (at least for awhile). This is a simple consequence
of the chain rule, which says that

d

dt
(f(L(t)) = ∇f(L(t)) · L′(t) = −∇f(L(t)) · ∇f(xk).

1

When t = 0 (L(0) = xk, so we’re just leaving the base point) the above formula gives
d
dt
(f(L(t)) = −|∇f(xk)|2 < 0. In other words, the search direction −∇f(xk) in steepest

descent points downhill. We then follow this direction and perform a 1D line search.
Something similar can be made to happen in Newton’s method; with a small modification

the vector hk chosen in step (2) of Newton’s method above will be a descent direction.

Lemma 1: Suppose that at a given iteration of Newton’s method we have that the Hessian
matrix H(xk) is positive definite, and that ∇f(xk) ̸= 0. Then the direction hk computed in
Newton’s method is a descent direction, i.e.,

d

dt
(f(xk + thk)) < 0

at t = 0.
To prove Lemma 1 just note that d

dt
(f(xk + thk)) = ∇f(xk + thk)

Thk. At t = 0 this
becomes

d

dt
(f(xk + thk))|t=0 = ∇f(xk)

Thk.

But from Newton’s method we have ∇f(xk) = −H(xk)hk, so we have

d

dt
(f(xk + thk))|t=0 = ∇f(xk)

Thk

= −hT
kH(xk)

Thk

= −hT
kH(xk)hk

< 0

where I’ve used the matrix algebra fact that (AB)T = BTAT for any matrices or vectors A
and B, and that H = HT (remember H is symmetric). And of course in the last step I used
that H(xk) is assumed to be positive definite. This proves Lemma 1.

What this means is that if we go in the direction hk computed in step (2) of Newton’s
method, we’re guaranteed to go downhill, IF H(xk) is positive definite. It doesn’t mean that
f(xk + hk) < f(xk), but merely that if we leave xk and head in the direction hk we’ll be
going downhill initially. So in our modified Newton’s method we don’t take xk+1 = xk + hk

as in straight Newton’s method—instead we take hk as a search direction and perform a line
search (more on this later), minimizing the one variable function

g(t) = f(xk + thk)

in t. If we find a minimum at t = t∗ then we take xk+1 = xk + t∗hk. Straight Newton’s
method corresponds to always making the choice t∗ = 1.

2

Cholesky Factorization

The fact that hk is a descent direction relies on H(xk) being positive definite. What if
that’s not true? In fact, if H(xk) is negative definite (i.e., −H is positive definite) then hk is
guaranteed to point UPHILL! How can we tell if H is positive definite, and if it isn’t, what
do we do about it?

These questions all tie in nicely with step (2) of Newton’s method, in which we must
solve the linear system H(xk)hk = −∇f(xk). There is a very effective method for solving
linear systems of the form

Mx = b (1)

where M is a symmetric positive definite matrix. It’s called Cholesky Factorization. It’s
faster than Gaussian elimination (or LU decomposition, if you’ve heard of that), and it can
tell when a matrix is or is not positive definite.

We will use L to represent a unit lower triangular matrix, that is, a matrix of the form

L =



1 0 0 · · · 0
L21 1 0 · · · 0
L31 L32 1 · · · 0

...
Ln1 Ln2 Ln3 · · · 1

 ,

and D to represent a diagonal matrix, i.e., a matrix with zeros everywhere except on the
diagonal.

Theorem: Any symmetric positive definite matrix M can be factored as

M = LDLT

for some unit lower triangular matrix L and diagonal matrix D which has entirely positive
entries on the diagonal.

The factorization above is called the Cholesky factorization of M. One thing is easy to
check immediately: Any matrix M which can be expressed as M = LDLT is symmetric and
positive definite.

Proof of Theorem: How about just an example? You can consult a linear algebra book
(or section 2.4 of Jeff Leader’s Numerical book) for the general proof. The matrix

M =

 2 −1 1
−1 3 0
1 0 5


3

is positive definite (which I’ll prove here in a moment.) Consider trying to express M via
the factorization above. We would need

M =

 2 −1 1
−1 3 0
1 0 5

 =

 1 0 0
L21 1 0
L31 L32 1


 D1 0 0

0 D2 0
0 0 D3


 1 L21 L31

0 1 L32

0 0 1

 .
Now we can easily multiply out the D and LT matrices on the right to get

M =

 2 −1 1
−1 3 0
1 0 5

 =

 1 0 0
L21 1 0
L31 L32 1


 D1 D1L21 D1L31

0 D2 D2L32

0 0 D3

 .
Now multiplying the first row in L times the first column in the second matrix shows that
D1 = 2. Multiplying the first row in L times the second column gives D1L21 = −1, so
L21 = −1/2. The first row in L times the third column gives D1L31 = 1, so L31 = 1/2.

If we fill in what’s known, here’s how things stand at the moment:

M =

 2 −1 1
−1 3 0
1 0 5

 =

 1 0 0
−1/2 1 0
1/2 L32 1


 2 −1 1
0 D2 D2L32

0 0 D3

 .
You can check that the second row in L times the first column in the second matrix on
the right gives −1, the correct entry in M—but then that HAD to work, given that LDLT

must be symmetric. Now multiply second row times second column to get 1/2 +D2 = 3, so
D2 = 5/2. Second row by third column gives −1/2 +D2L32 = 0, so L32 = (1/2)/D2 = 1/5.
We currently have

M =

 2 −1 1
−1 3 0
1 0 5

 =

 1 0 0
−1/2 1 0
1/2 1/5 1


 2 −1 1
0 5/2 1/2
0 0 D3

 .
Finally, take the third row times third column to find that D3 = 22/5. The entire decompo-
sition looks like

M =

 2 −1 1
−1 3 0
1 0 5

 =

 1 0 0
−1/2 1 0
1/2 1/5 1


 2 0 0
0 5/2 0
0 0 22/5


 1 −1/2 1/2
0 1 1/5
0 0 1

 (2)

Notice how at each stage (some row times some column) we always had from a previous
stage the information needed to solve for exactly one more unknown. This holds in general
if the original matrix is positive definite. It’s not hard to see how to do the Cholesky
decomposition for a general n by n matrix—everything just falls into place. Moreover, the

4

procedure as detailed above is numerically stable for positive definite matrices. You can do
an operation count to see that the procedure requires about n3/6 operations for an n by n
matrix. This is about half as many operations as needed to do a standard LU decomposition
on M.

This also gives an efficient way to solve the equation Mx = b. If we have the Cholesky
decomposition of M this becomes LDLTx = b. We can solve the system by first solving
Lx′ = b (so DLTx = x′), then Dx′′ = x′ (so LTx = x′′), then finally LTx = x′′. All of these
systems are easy to solve by “backsubstitution.” For example, suppose b = (1,−2, 3)T for
the example M above. The equation Lx′ = b is just 1 0 0

−1/2 1 0
1/2 1/5 1


 x′

1

x′
2

x′
3

 =

 1
−2
3

 .
We immediately obtain x′

1 = 1. The second equation is just (−1/2)x′
1+x′

2 = 2, or x′
2 = −3/2.

The last equation is (1/2)x′
1 + (1/5)x′

2 + x′
3 = 3, so x′

3 = 14/5. In short, Lx′ = b is easy to
solve because L is lower triangular—we can pick off the x′

k one at a time.
Solving Dx′′ = x′ is even more trivial (think about it). You get x′′

1 = 1/2, x′′
2 = −3/5,

x′′
3 = 7/11. Finally, solving LTx = (1/2,−3/5, 7/11)T is also easy—backsubstitute as for L,

but start from the bottom up. You get x3 = 7/11, x2 = −8/11, x1 = −2/11.
Cholesky factorization is a very standard method for solving linear systems involving

positive definite matrices, and would be the logical choice for solving Hhk = −∇f in New-
ton’s method if we know that H is positive definite. What happens if we feed a symmetric
matrix M which isn’t positive definite to Cholesky? Then at some stage we will find that
Dk ≤ 0 for some k. In fact, the computation may break down entirely—try doing a Cholesky
decomposition on the matrix [

0 1
1 0

]
.

We need to make a small modification.

Improved Newton’s Method

By using Cholesky decomposition in step (2) of Newton’s method, we can implement a
strategy to guarantee that the direction hk computed is always a descent direction. Let’s
suppose we are currently faced with the task of solving H(xk)hk = −∇f(xk). We try to
perform a Cholesky decomposition. Suppose that in computing some Dk we find that Dk ≤
0—then we replace Dk by some fixed number δ > 0, and continue with the factorization.
When we’re done we have matrices L and D, and we can form a positive definite matrix
H̃ = LDLT , but H̃ ̸= H. However, H̃ is “closely related” to H. Moreover, if we solve
H̃hk = −∇f(xk) then hk is guaranteed to be a descent direction. This can be shown

5

exactly as in Lemma 1 above—just replace H(xk) by H̃ and the entire computation proceeds
unchanged. But note that if H is positive definite (with all diagonal entries of D larger than
the chosen δ) then H̃ = H and we obtain the usual Newton step.

The general philosophy is this: Far from a minimum, where the quadratic approximation
on which Newton is based is a poor model for f , we expect to find H is not necessarily
positive definite, but this modified Newton’s Method still gives a descent direction and we
can make progress downhill. When we get closer to a minimum (and so H should become
positive definite) then H̃ = H, and so the search direction is chosen as in the usual Newton’s
method, although we don’t take the full step dictated by Newton’s method, but rather do a
line search in that direction.

A simple outline of a modified Newton’s method would look like

1. Set an initial guess x0, set k = 0.

2. Solve the linear system
H(xk)hk = −∇f(xk)

for the search direction hk, using the modified Cholesky decomposition (if Dk < δ at
some stage of the decomposition for some fixed positive δ, replace Dk with δ.)

3. Perform a line search from xk in the direction hk (guaranteed to be a descent direction.)

4. Take xk+1 as the minimizing point in the line search; if hk is small (or |∇f(xk)| is
small) then terminate with minimum xk+1; otherwise increment k = k+1, and repeat
step 2.

We could also make the simple modification that when we get close to a minimum (perhaps
as measured by |xk+1 − xk|) then we dispense with the line search and take the unmodified
Newton step.

Here’s an example using Rosenbrock’s function, f(x1, x2) = 100(x2 − x2
1)

2 + (1 − x1)
2

with starting point (−1,−1). I chose δ = 0.1 in the Cholesky decomposition.The algorithm
required 14 iterations to locate the minimum to within 10−6.

6

–1.5

–1

–0.5

0.5

1

1.5

x2

–1.5 –1 –0.5 0.5 1 1.5x1

Line Search Algorithms

Both steepest descent and the modified Newton’s method fall into a class of optimization
algorithms call “line search algorithms.” They all fit into the following mold:

1. Set an initial guess x0, set k = 0.

2. Compute a search direction hk. Make sure it is a descent direction.

3. Perform a line search from xk in the direction hk. Take xk+1 as the minimizing point
in the line search, or less stringently, require that xk+1 be chosen so that f(xk+1) is
“sufficiently” less than f(xk).

4. If |∇f(xk)| is small or xk+1 is close to xk then terminate with minimum xk+1; otherwise
increment k = k + 1, and repeat step 2.

It may appear that one should perform an exact line search in step (3), that is, locate
the minimum along the line xk + thk to high accuracy. In fact, this is not always necessary
or desirable. The effort expended in doing this (the excess function and possibly derivative
evaluations) may not compensate for the resulting decrease in functional value; it’s often
better to do an “inexact” line search and expend additional computational effort in comput-
ing a new search direction. Let’s look at one strategy for doing a less rigorous line search.

7

The Armijo Condition

Let the current base point be xk and the search direction be hk; we will do a line search
in the direction hk, i.e., try to minimize g(t) = f(xk + thk). We’ll look at a technique which
doesn’t precisely minimize g(t)—just decreasing its value “sufficiently” from g(0) = f(xk) is
often good enough.

One common method for quantifying “sufficient decrease” is as follows. You can compute
that

g′(t) = ∇f(xk + thk) · hk.

Given that near t = 0 we have g(t) ≈ g(0) + tg′(0) this leads to f(xk + thk) ≈ f(xk) +
t∇f(xk) · hk or

f(xk + thk)− f(xk) ≈ t∇f(xk) · hk. (3)

This quantifies how much we can expect to decrease f by moving small distance along the line
xk+thk starting at xk (t = 0); note that if hk is a descent direction then f(xk+thk)−f(xk) <
0. Let t = tk be the value of t that we eventually accept in our line search. The Armijo
condition for sufficient decrease is that

f(xk + tkhk)− f(xk) < µtk∇f(xk) · hk (4)

where µ is some constant with 0 < µ < 1. In other words, the resulting step from t = 0 to
t = tk must not merely decrease the function value, but must decrease it by at least some
specified fraction of the decrease predicted by the approximation in equation (3).

If µ is close to zero then condition (4) is easier to satisfy, but as a result the line search
could be quite inefficient—almost any step t is likely to work. Taking µ close to 1 may seem
desirable, but can result in very small step sizes tk (and again, inefficiency in the line search).
But for µ < 1 there’s always some choice for tk which will work. To see this, suppose, to the
contrary, that for all t sufficiently close to 0 we have f(xk + thk) − f(xk) ≥ µ∇f(xk) · hk.
Divide by t and take the limit as t → 0, then divide by ∇f(xk) · hk (which is negative) to
obtain µ ≥ 1, a contradiction.

Thus taking µ ≈ 1 may only force any line search to take t ≈ 0 and hence small, inefficient
steps. Typically one chooses µ in the range 0.1 to 0.5, although this is hardly set in stone.

Here’s a picture illustrating the Armijo condition. It is a graph of g(t) = f(xk + thk)
for some f . The slope g′(0) = −1. With µ = 1/2 the Armijo condition is that t be chosen
so that g(t) − g(0) < 1

2
tg′(0), which is equivalent to requiring that g(t) lies below the line

L(t) = g(0) + 1
2
g′(0)t.

8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4x

Here is a concrete strategy for doing an inexact line search using the Armijo condition.
Given the descent direction hk computed from modified Newton’s method we set t = 1 and
check to see if f(xk+thk) satisfies the Armijo condition (4). If it does we take xk+1 = xk+hk.
If not we set (for example) t = 1/2 and try again—if the Armijo condition is satisfied we take
xk+1 = xk+

1
2
hk. If that still doesn’t satisfy the Armijo condition we continue trying t = 2−j;

eventually some value of t must succeed (after t gets small enough this is guaranteed.) When
this happens we take xk+1 = xk + thk.

Here it is written out:

1. Set an initial guess x0, set k = 0.

2. Solve the linear system
H(xk)hk = −∇f(xk)

for the search direction hk, using the modified Cholesky decomposition (if Dk < δ at
some stage of the decomposition for some fixed positive δ, replace Dk with δ.)

3. Try t = 2−j for j = 0, 1, 2, . . . and accept the first value for t which satisfies

f(xk + thk)− f(xk) < µt∇f(xk) · hk.

4. Take xk+1 = xk+ thk; if |∇f(xk)| is small (or |xk+1−xk| is small) then terminate with
minimum xk+1; otherwise increment k = k + 1, and repeat step 2.

Here again is an example using Rosenbrock’s function, f(x1, x2) = 100(x2−x2
1)

2+(1−x1)
2

with starting point (−1,−1). I chose δ = 0.1 in the Cholesky decomposition and µ = 0.5.
The algorithm required 22 iterations to locate the minimum to within 10−6.

9

–1.5

–1

–0.5

0.5

1

1.5

x2

–1.5 –1 –0.5 0.5 1 1.5x1

10

