
Vector Spaces and Matrices
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Matrices as “Functions”

Up to now matrices have been pretty static objects. We’ve used them mainly as a
bookkeeping tool for doing Gaussian elimination on systems of equations, as a way to avoid
writing all the xk variables when we perform elementary operations on equations. But in
fact matrices can be a bit more dynamic—a matrix can actually be thought of as a function,
and this point of view can give a lot of insight into the question of whether a system of linear
equations is solvable or not, and what to do if there is no solution .

Specifically, suppose we have m by n matrix A. We can compute Ax for any vector
x in lRn; the result is a vector in lRm. In this way a matrix A can be thought of as a
function from lRn to lRm. More precisely, an m by n matrix “induces” a function x → Ax
from lRn to lRm. (We shouldn’t actually write A for this function; A is the matrix itself.
Some people write TA to denote the actual function from lRn to lRm, but I won’t harp on this).

Example 1: Let

A =

[
1 4 5
−1 0 3

]
. (1)

Then for a vector x =< x1, x2, x3 > in lR3,

TA(x) = Ax =

[
1 4 5
−1 0 3

] 


x1

x2

x3


 =

[
x1 + 4x2 + 5x3

−x1 + 3x3

]
,

a vector in lR2.

There is another very important observation to make about multiplying vectors by ma-
trices. Let A be the matrix defined by (1). Then you can easily check that the matrix
multiplication can be done as

Ax = x1

[
1
−1

]
+ x2

[
4
0

]
+ x3

[
5
3

]
.

In other words, Ax consists of linear combinations of the columns of A. You can check that
this is always true—the product Ax is a linear combination of the columns of A.

This observation gives another view on why Ax = b is not typically solvable if we have
more equations than unknowns, say m equations in n unknowns with n < m. For x in lRn the
vector Ax is a linear combination of a set of n vectors in m dimensional space. Since n < m,
such a set of vectors cannot span lRm. As a result, the range of the function TA(x) = Ax is
not lRm, but some proper subspace of lRm, and for most b ∈ lRm there won’t be any x such
that Ax = b.
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Example 2: Let

A =




1 2
0 −1
−1 3


 (2)

and x =< x1, x2 > then

Ax = x1




1
0
−1


 + x2




2
−1
3


 .

This generates only a two-dimensional subspace of lR3, i.e., a plane. If a three-dimensional
vector b lies in this plane then Ax = b is solvable. But as your geometric intuition should
tell you, “most” vectors in lR3 will not lie in such a plane, and for such a vector b, Ax = b
will have no solution.

Problem 1:

• Let A be the matrix defined by equation (2) and let b =< a, b, c >. Perform Gaus-
sian elimination to solve Ax = b and find conditions on a, b, and c which guarantee
consistency of the system, so find which b are in the range of TA. Hint: this condition
involves a linear combination of a, b, and c. What does this subset of lR3 look like?

Column, Null, and Row Spaces

In Example 2, as x ranges over all of lR2, Ax generates the span of the two columns of
A in lR3. More generally for an m by n matrix A, as x ranges over lRn, Ax generates the
span of the columns of A. This span is a subspace of lRm and is called the column space of
A. In Example 2 above the column space was spanned by < 1, 0,−1 > and < 2,−1, 3 >.
In fact, since these two vectors are linearly independent they form a basis for the column
space, which is consequently two-dimensional. In general the dimension of the column space
of a matrix is called the column rank of the matrix.

But be careful. Just because a matrix has n columns doesn’t mean the column space is
n dimensional. For example, if

A =

[
1 2
2 4

]

then the column space of A is just a one-dimensional line in lR2, since the column vectors
are linearly dependent.

Another subspace related to an m by n matrix is the nullspace, the subspace of lRm

defined by those vectors x ∈ lRm which satisfy Ax = 0. The dimension of this subspace is
called the nullity of the matrix.

Problems 2:

• Find a basis for the column spaces of the matrices defined in equations (1) and (2), by
throwing out any columns which are linear combinations of other columns.

• Find a basis for the nullspaces of the matrices defined in equations (1) and (2) by
solving Ax = 0.
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• Show that the nullspace of an m by n matrix A is in fact a subspace of lRn by showing
that this set is closed under addition and scalar multiplication.

• If A is an invertible n by n matrix, what is the nullspace of A? What if A isn’t
invertible—what can you say about its nullspace?

• What can you say about the nullspace of an m by n matrix when m < n? How about
when m > n? Or m = n?

• Suppose we have found a solution x = x0 to Ax = b for some matrix A. What can you
say about the uniqueness of this solution if the nullspace of A is the trivial subspace
0? What if the nullspace of A has positive dimension?

Finally, another subspace associated to such a matrix is the row space, the subspace of
lRn spanned by the rows of A, considered as n dimensional vectors, of course. An m by n
matrix has m rows, but (as with the column space) the dimension of the row space could be
less than m if the rows are linearly dependent. The dimension of the row space of a matrix
is called the row rank of the matrix.

Problem 3:

• Let

A =




1 0 1 −1
0 1 2 −2
3 −2 −1 1


 .

Find a basis for the row space of A by determining which row vectors are linear
combinations of the others, and find the row rank of this matrix.

The Dimension Theorems

It turns out that the row rank, column rank, and nullity of a matrix can’t be just
anything—there are some fundamental relations between these quantities and the dimen-
sions of the matrix. To understand this, we need to look more carefully at the process of
finding the row rank, column rank, and nullspace of a matrix.

Finding the Row Rank

We need a concrete way to find the row space for a matrix. As always, the civilized way
to specify a subspace is by giving a basis for the subspace, so we want a general procedure
for computing basis vectors for the row space.

Let’s proceed via a simple example. Take

A =




1 1 1 5
1 1 −3 −7
2 2 −1 1


 . (3)

The row space of A is spanned by the row vectors, but that doesn’t mean the rows are a
basis—they might be linearly dependent. We need to find the dependencies and throw out
any “redundancies”.
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To do this we’re going to do Gauss-Jordan elimination to put A in reduced echelon form
(but at this stage we’re not trying to solve Ax = b for any b). The first step would be the
elementary row operation R2 → R2 −R1, leading to the matrix

A′ =




1 1 1 5
0 0 −4 −12
2 2 −1 1


 .

Here’s an important observation: The rows of A′ span exactly the same subspace in lR4 as
the rows of A. This is clear because:

1. The rows of A′ are constructed from linear combinations of the rows of A, so anything
that can be built (linearly) from the rows of A′ can be built from the rows of A.

2. The elementary rows operations we use are reversible. As a result we can build the
rows of A from the rows of A′ (by reversing the row operations). Hence anything that
can be built (linearly) from the rows of A can be built from the rows of A′.

This fact holds through each elementary row operation—the rows of each successive matrix
span the same subspace of lR4 as the rows of the previous matrix.

Finishing off the Gauss-Jordan elimination of A leads us to the reduced echelon matrix

E =




1 1 0 2
0 0 1 3
0 0 0 0


 . (4)

This matrix has exactly the same row space as the original A. And in fact I claim it’s easy
to see a basis for the row space of E—it’s exactly the non-zero rows of E. Obviously the
zero row at the bottom contributes nothing to the row space; the row space is spanned by
the non-zero rows of E. I claim that these rows are linearly independent, and so form a basis
for the row space. There’s no need for an elaborate computation to check the independence.
Note that each non-zero row contains a pivot element (which I’ve circled). Also note that
each pivot element is the lone non-zero entry in its column. As a result, if we consider the
equation

c1 < 1, 1, 0, 2 > +c2 < 0, 0, 1, 3 >=< 0, 0, 0, 0 >

to check independence, we are led to < c1, c1, c2, 2c1 + 3c2 >=< 0, 0, 0, 0 >. Now the first
component of this vector is just c1, leading the equation c1 = 0. This is a consequence of
the fact that pivot element in row 1 is the only non-zero entry in its column. The third
component of < c1, c1, c2, 2c1 + 3c2 > is just c2, stemming from the fact that the row 2 pivot
is the only non-zero entry in the third column of E. Of course this forces c2 = 0 and we
conclude that the two non-zero rows of E are linearly independent.
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Problem 4:

• Gauss-Jordan elimination is performed on a certain 5 by 5 matrix, leading to

E =




1 0 4 0 2
0 1 −2 0 3
0 0 0 1 2
0 0 0 0 0
0 0 0 0 0




.

Verify that the three non-zero rows are linearly independent.

So we now have a methodical way to find a basis for the row space of a matrix—Gauss-
Jordan eliminate and take the non-zero rows as the basis. Note that each non-zero row
contains exactly one pivot, and every pivot of course lives in some row. As a result

• The row rank is exactly the number of pivot elements in the reduced echelon form of
the matrix.

Finding the Column Rank

Now we’ll look at how one can find a basis for the column space of a matrix A. The
column space is spanned by the columns of A, but as with the row space these vectors might
not be linearly independent. What we need to do (as we did with the row space) is root
out the linear dependencies. Again, let’s use the matrix we used in the row space example,
defined by equation (3). To test the linear independence of the columns of A we look for
non-zero solutions < x1, x2, x3, x4 > to

x1




1
1
2


 + x2




1
1
2


 + x3




1
−3
−1


 + x4




5
−7
1


 =




0
0
0


 .

But in fact, this is nothing more than the equation Ax = 0! We can solve this by forming
the augmented matrix [A|0] and doing Gauss-Jordan elimination. The computations are
exactly the same as the row-space case, but with an additional column of zeros tacked on at
the right (and this column stays all zeros through all elementary row operations). We are
led to the matrix 


1 1 0 2 0
0 0 1 3 0
0 0 0 0 0


 (5)

corresponding to the equation Ex = 0 (which has exactly the same solutions as Ax = 0).
Notice that the pivot elements live in columns 1 and 3. I claim that all other columns can
be built from these two columns.

To see this, cast Ex = 0 back into the “linear combinations of columns” form, i.e.,

x1




1
0
0


 + x2




1
0
0


 + x3




0
1
0


 + x4




2
3
0


 =




0
0
0


 . (6)
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Now notice that taking x1 = 1, x2 = −1, and all other xk = 0 gives a solution to the equation.
In terms of the original matrix, this means that

A




1
−1
0
0


 = 0

so the first column of A minus the second column of A is zero, i.e., the second column
equals the first. This means that the second column of A is a linear combination of the
other columns. We can throw out the second column as a basis element.

Now look back at equation (6) and note that x1 = 2, x2 = 0, x3 = 3, x4 = −1 gives a
solution to Ex = 0, and hence also to Ax = 0. This means that the 4th column in A is
twice the first column plus three times the third column, i.e., a linear combination of these
columns. We can throw out column 4 of A as a basis element.

What remains as basis elements for the column space are exactly those columns of A in
which the pivot elements reside (in E).

Problem 5:

• Let E be the 5 by 5 matrix reduced echelon matrix in the problem at the bottom of
page 4. Verify that any column without a pivot can be written as a linear combination
of those columns which contain pivots.

• Make up a few matrices in Maple, then hit them with the rref command to get them to
reduced echelon form. Look at the structure of the reduced echelon form and convince
yourself that any column without a pivot can be written as a linear combination of
columns with pivots. Also convince yourself that the pivot columns are always linearly
independent.

• True or False: The column space of a matrix is the same as the column space of the
reduced echelon matrix.

What we’ve now shown is that the dimension of the column space is the number of pivot
elements in the reduced echelon form of the matrix. But this was exactly the dimension of
the row space as well! We’ve proved that

Theorem: The row rank of a matrix equals the column rank of the matrix.

This is an especially surprising fact, given that the row and column spaces are subspaces
of entirely different vectors spaces, lRm and lRn with different m and n. Since the row and
column rank must be the same, we often just refer to the rank of a matrix.

The Rank and Nullity

Look back at the matrix defined by equation (3) and consider the problem of finding a
basis for the nullspace. Finding the nullspace means finding all solutions to Ax = 0. But
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we’ve already done the work of forming [A|0] and doing Gauss-Jordan elimination. It led
to the matrix in (5). Now if we backsubstitute to find the solutions, we see that columns 4
and 2 lack pivots and hence give rise to free variables—I’ll call these variables s and t. The
backsubstitution actually produces vectors < −2s− t, t,−3s, s >, or

x = s




−2
0
−3
1


 + t




−1
1
0
0


 .

In this case (since the vectors are independent) you can see that the nullspace is two dimen-
sional.

More generally, the vectors produced by this procedure are ALWAYS independent, for
a reason very similar to the reason that the non-zero rows in the reduced echelon form are
independent: If the nullspace computation produces vectors v1, . . . ,vk, (coming from k free
variables) then a free variable in the jth column will give rise to a nullspace vector which
has a 1 in the jth position, while all other vectors will have zeros in this position.

Problem 6:

• Again consider the matrix E at the bottom of page 4 (already in reduced echelon
form). Backsubstitute Ex = 0 to find vectors which span the nullspace. Verify that
the vectors are linearly independent—as asserted above, each will contain a 1 in a
position where all other vectors so produced contain 0.

Now given an m by n matrix A, our column/row rank computations show that each
column with a pivot in the reduce echelon form contributes one to the rank of the matrix.
The nullspace computations show that each column without a pivot contributes one to the
nullity of the matrix. Since each column either contains a pivot or doesn’t, we shown the

Rank-Nullity Theorem: The rank of a matrix plus the nullity of the matrix equals the
number of columns in the matrix.

This theorem is also sometimes called the Dimension Theorem, or even the Fundamental
Theorem of Linear Algebra.

Problems 7:

• Verify that this was the case in Problem 3.

• Suppose A is a 3 by 7 matrix. Why must A have a non-trivial nullspace?

• Suppose A is a 3 by 7 matrix and Ax = b is not solvable for a certain vector b in lR3.
What can you say about the nullity of A?
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Least Squares Solutions

Consider the points (−1, 4), (−1, 3), (0, 2), (1, 1), (3, 7). Suppose we want to interpolate
these points with a quadratic polynomial p(x) = a + bx + cx2. Of course a quadratic
typically can’t be drawn through 5 points, and in the present case it’s clearly hopeless (for a
polynomial of any degree), for the first two points have the same x coordinates but different
y coordinates. Nonetheless, we ought to do the best we can; if you plot the points, they do
lie approximately on some parabola.

If we were to try to find an interpolating polynomial, we’d be led to Ax = b, with

A =




1 −1 1
1 −1 1
1 0 0
1 1 1
1 3 9




, x =




a
b
c


 , b =




4
3
2
1
7




(7)

a system with no solution.
The problem is that the column space of A, a subspace of lR5, doesn’t contain b. Here’s

a picture to help you visualize the situation:

Ax0
Ax

b

Our “solution” to this problem will consist of choosing x0 in lR3 so that Ax0 is as close
to b as possible.

Now it’s easy to see geometrically (and we’ll prove it later) that if Ax0 is in the column
space of A and lies as close to b as possible, then the vector Ax0 − b must be orthogonal
to every single vector in the column space of A. Thus x0 has to satisfy

(Ax0 − b) · (Ax) = 0 (8)

for EVERY vector x in lR3. The task now is to deduce what this tells us about x0. But first,
we need to cast the dot product in terms of matrix multiplication.
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The Transpose of a Matrix

If A is an m by n matrix with entries aij then the transpose of A, written AT is the n
by m matrix with entries aji.

Problems 8

• Write out the transpose of the matrix A and the vector b in equation (7).

• Consider two vectors

v =




v1

v2
...

vn




, w =




w1

w2
...

wn




in lRn. Write out vTw and wTv.

The main reason for introducing the transpose is that it gives us an easy way to cast the
dot product in terms of matrix multiplication. In fact, in the last problem you figured out
how to do this: v ·w = vTw = wvT .

There’s one last fact we need about transposes. You should recall that for matrices we
have (AB)−1 = B−1A−1. A similar fact holds for the transpose: (AB)T = BTAT .

Problem 9:

• Suppose that A is m by n and B is n by r, so AB can be formed. What are the
dimensions of AT and BT ? Verify that the product BTAT can be formed.

To prove the transpose product formula, start with the brutally rigorous definition of matrix
multiplication, specifically, if C = AB (where A is m by n and B is n by r) then the i,jth
entry of C is

cij =
n∑

k=1

aikbkj

for 1 ≤ i ≤ m, 1 ≤ j ≤ r. Let c̃ij denote the entries of CT , so c̃ij = cji. The transpose CT

thus has entries obtained by interchanging the i and j’s in the above summation,

c̃ij =
n∑

k=1

ajkbki. (9)

Now compare this to the product D = BTAT . Let b̃ij denote the entries of BT and ãij

denote the entries of AT . Of course then b̃ij = bji and ãij = aji. If we write dij for the
entries of D = BTAT then

dij =
n∑

k=1

b̃ikãkj =
n∑

k=1

bkiajk (10)

for 1 ≤ i ≤ r, 1 ≤ j ≤ m, which are exactly the entries c̃ij of (AB)T .
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Problem 10:

• Suppose that v is some vector in lRn and vTw = 0 for EVERY vector w in lRn. Explain
why v must in fact be the zero vector.

Back to Least Squares

In light of our work with the transpose, we can write equation (8) as

(Ax)T (Ax0 − b) = 0.

But since (Ax)T = xTAT , this is really

xTAT (Ax0 − b) = 0. (11)

Now remember, this must hold for EVERY vector x in lRn. The quantity AT (Ax0 − b) in
equation (11) is just some vector v in lRn; since xTv = 0 for all x, we conclude (based on
Problem 10) that v = 0, i.e., we must have

AT (Ax0 − b) = 0.

or with a little rearrangement,
ATAx0 = ATb. (12)

This is a condition that x0 must satisfy if it is to minimize the difference Ax0 − b. If the
matrix ATA is invertible, we can find the least squares solution x0 to Ax = b.

Example: Let’s go back to the polynomial curve fitting problem as the start of this section,
embodied in equation (7). You can easily compute that

ATA =




5 2 12
2 12 26
12 26 84


 , ATb =




17
15
71


 .

You can solve (ATA)x = ATb to find that x0 =< 318/211,−469/422, 411/422 > is the least
squares solution, so that p(x) = 318

211
− 496

422
+ 411

422
x2 is the quadratic polynomial which does the

best job (in the sense of least squares) to fitting the data points.

Problems 11:

• If A is m by n (so x0 is in lRn, b is in lRm) check that everything in equation (12) is
dimensionally compatible.

• Find the line f(x) = a+bx which does the best job of fitting the points (0, 1), (1, 1), (3, 5), (4, 4),
and (5, 4). Plot the line and these points.

• Find that cubic polynomial p(x) = a + bx + cx2 + dx3 which best fits the data in the
previous problem.
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One last word: it sometimes occurs that ATA is NOT invertible, meaning it has a non-
trivial nullspace. At first glance, this might seem to suggest that the system ATAx = ATb
has no solution, but in fact it always does (if you believe the figure above, there has to be
some point in the column space of A which is closest to b). What does happen in this case
is that there are an infinite number of least squares solutions, any one as good as another,
at least from the point of view of minimizing the difference Ax − b. In this case one often
chooses that least squares solutions which has minimum length.
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