
Linear Least Squares Optimization
MA 348 Optimization

Kurt Bryan

Linear Least-Squares

Consider an objective function of the special form

f(x) =
1

2

m∑
i=1

f 2
i (x) (1)

where x ∈ lRn and each function fi is LINEAR, that is, of the form fi(x) = aT
i x − bi for

some ai ∈ lRn and some scalar bi. Such functions occur frequently when fitting linear models
to data; usually m is larger than n, sometimes much larger. For example, one might try to
fit a model ϕ(x) = a+ bx+ cx2 to (x, y) data points (1.0, 2.2), (1.6, 2.8), (2.3, 3.9), (3.4, 4.4),
and (4.1, 5.2), by adjusting a, b, and c to minimize the squared error

f(a, b, c) =
1

2
((ϕ(1.0)−2.2)2+(ϕ(1.6)−2.8)2+(ϕ(2.3)−3.9)2+(ϕ(3.4−4.4)2+(ϕ(4.1)−5.2)2).

In this case x = (a, b, c), f1(a, b, c) = a + b + c − 2.2, f2(a, b, c) = a + 1.6b + (1.6)2c − 2.8,
etc. The factor of 1/2 above and in equation (1) is there only to make some formulas that
appear later prettier; it doesn’t really change the problem.

Another typical situation in which such objective functions arise is that of solving Ax =
b when there are more equations than unknowns (or more generally when the system is
inconsistent). In the case that Ax = b has no solution, we might instead seek that x which
does the “best” job of solving the equations, in the sense that x minimizes

f(x) =
1

2
∥Ax− b∥2 (2)

where ∥p∥2 =
∑

i p
2
i is the usual Euclidean 2-norm. This fits into the mold of equation (1)

where ai in (1) is the ith row of A. Thus the problem of minimizing a function of the form
in (2) can be cast in the form of minimizing f in equation (1).

In fact, the converse is also true: minimization of the function f in (1) can be cast into
the form (2) by taking A to have the vectors aT

i as rows and b = (b1, . . . , bn)
T . The problems

of minimizing the functions in equations (1) and (2) are thus totally equivalent.
Of course you could attack this optimization problem with any general nonlinear algo-

rithm, e.g., conjugate gradients or quasi-Newton methods. But the objective function (1) has
a very special structure—setting the gradient to zero leads to a linear system of equations
which can be solved quite efficiently.

The Normal Equations

The objective function in (2) can be written out in gory detail as

f(x) =
1

2

m∑
i=1

(
n∑

j=1

Aijxj − bi)
2 (3)

1

Differentiate with respect to xk to find

∂f

∂xk

=
m∑
i=1

n∑
j=1

AijAikxj −
m∑
i=1

Aikbi. (4)

We can do the double sum in any order we like. You can easily check that
∑m

i=1Aikbi is just
the kth component of ATb, which I’ll write as (ATb)k. Also,

∑m
i=1AijAik is just (ATA)jk

or (ATA)kj (since ATA is symmetric), so that
∑n

j=1(
∑m

i=1AijAik)xj is just (A
TAx)k.

If we arrange ∇f as a column vector (stack components k = 1 to k = n) we find that
∇f(x) = ATAx−ATb and the condition for a critical point is that ∇f = 0, or

ATAx = ATb. (5)

These are the so-called normal equations. They ought to look familiar from DE I.

Solving the Normal Equations

The normal equations are just an n by n system of linear equations for x. The matrix
ATA is symmetric and positive semi-definite. In fact this matrix is very likely positive
definite (exactly when A has full column rank), so we can try solving by using Cholesky
Factorization, which buys a factor of 2 efficiency over LU. This is a reasonable way to solve
the problem, although you can sometimes run into trouble in certain cases A.

As an example, consider the case in which

A =

 1 1
ϵ −2ϵ
0 0

 , b =

 1
0
1


with ϵ = 10−5. The matrix A is “close” to being rank 1, but it seems reasonable that
if we work in 10 digit arithmetic we shouldn’t have any trouble. The EXACT solution
to the normal equations (5) in this case is x1 = 2/3, x2 = 1/3, which you can compute
symbolically, with no rounding error. But if you solve the normal equations numerically
using either Cholesky or LU factorization with 10 digit arithmetic you get x1 = 0.5 and
x2 = 0.5, which is horrible. If you work in anything LESS than 10 digits you find that ATA
is outright singular.

The problem is that forming the product ATA encourages round off error, essentially
halving the number of significant figures we have at our disposal. If you want to know more,
take numerical analysis. This isn’t a problem if A is far enough from singular (though you
still lose significant figures). What we’d like is a way to minimize f(x) in equation (2) but
without forming ATA.

2

QR Factorization

Instead of using a Cholesky Factorization A = LTDL and backsubstitution to solve,
we’ll use a QR factorization. It’s a fact that any m by n matrix A can factored as A = QR
where Q is an m by m orthogonal matrix (meaning QTQ = I) and R is an m by n upper
triangular matrix. This can be used to minimize the function in equation (2).

Example

Let

A =

 1 1
0 −1
2 2

 .
The you can check that A = QR where

Q =


√
5
5

0 2
√
5

5

0 −1 0
2
√
5

5
0 −

√
5
5

 , R =


√
5

√
5

0 1
0 0

 .
Computing the QR Decomposition

The QR decomposition is computed by selectively transforming each column of A into
the required form from left to right. We’ll multiply A by an orthogonal matrix Q1 which
will zero out all entries in the first column of A except the top entry. We’ll then multiply
Q1A by an orthogonal matrix Q2 which will zero out all but the top two elements in column
2, but without messing up column 1. We continue like this, so at the kth stage we multiply
Qk−1 · · ·Q1A by an orthogonal matrix Qk which eliminates all but the top k elements in
column k, without messing up the previous columns. If w do this for k = 1 to k = n we
obtain something like

QnQn−1 · · ·Q1A = R (6)

where R is upper triangular. We then have QA = R for some orthogonal matrix Q =
QnQn−1 · · ·Q1 (since the product of orthogonal matrices is orthogonal). From this we can
obtain A = QR (exercise).

Exercise

• Show that the product of orthogonal matrices is orthogonal.

• Prove A = QR using equation (6).

The trick is to find an orthogonal matrix Q that selectively zeroes out all but the top
k elements of a given vector (since each column of A is processed one at a time, we can
consider them as vectors).

3

A useful fact to note is this: ∥Qx∥ = ∥x∥ for any orthogonal Q and vector x, so multi-
plication by Q preserves Euclidean length. To see this just note that

∥Qx∥2 = (Qx) · (Qx)

= (xTQT)(Qx)

= xTx

= ∥x∥2

Exercise

• True or False: The converse of the above holds, i.e. if ∥Px∥ = ∥x∥ for all x then P is
orthogonal.

Here’s how to construct the magic Qi matrices. Let v be a vector in lRn. Form the
matrix

H = I− 2
vvT

vTv
(7)

an n by n matrix. The matrix H is orthogonal, for

HTH = (I− 2
vvT

vTv
)T (I− 2

vvT

vTv
)

= (I− 2
vvT

vTv
)(I− 2

vvT

vTv
)

= I− 4
vvT

vTv
+ 4

vvT

vTv

vvT

vTv

= I− 4
vvT

vTv
+ 4

vvT

vTv
= I

since the middle vTv in the last term on the second-to-last line is just a scalar and can-
cels with one of the denominator copies. Matrices of the form of equation (7) are called
Householder matrices.

Let a be a vector in lRn. Consider the chore of choosing v so that H as defined by
equation (7) has the effect that forming Ha zeros out all but the first element of a, i.e.,

Ha =


α
0
...
0

 = αe1.

Since H is length-preserving we must have α = ±∥a∥. How should we choose v? If you
write out Ha explicitly you obtain

Ha =

(
I− 2

vvT

vTv

)
a = a− 2v

vTa

vTv
= αe1

4

or, if we solve for v,

v = (a− αe1)
vTv

2vTa
. (8)

Now the quantity vTv
2vT a

is just a scalar, and if you examine the definition of H you see that
multiplying v by a scalar doesn’t change anything. We then might just as well scale v so
vTv
2vT a

= 1 and so take
v = a± ∥a∥e1 (9)

where I’ve used α = ±∥a∥. It’s conventional to take the plus sign in equation (9) if a1 ≥ 0
and the minus sign if a1 < 0, to avoid cancellation errors.

Example:

Let a = [1, 2, 4,−2]T . Then ∥a∥ = 5 and we obtain v = a + [5, 0, 0, 0]T = [6, 2, 4,−2]T .
The matrix H is

H =


−1

5
−2

5
−4

5
2
5

−2
5

13
15

− 4
15

2
15

−4
5

− 4
15

7
15

4
15

2
5

2
15

4
15

13
15

 .
You can check that Ha = [−5, 0, 0, 0]T .

To zero out all but the top k elements of a vector a, partition a into two pieces

a =

[
a1

a2

]

where a1 is in lRk−1 and a2 is in lRn−k+1. We can find a vector v2 ∈ lRn−k+1 and corresponding
n− k + 1 by n− k + 1 Householder matrix H2 with the property that

H2a2 =


α
0
...
0

 .

Now let v be defined by

v =

[
0
v2

]
.

The corresponding Householder matrix looks like

H =

[
I 0
0 H2

]

and has the desired effect of zeroing out the bottom n− k elements of a.

5

Now that we have a recipe for constructing orthogonal matrices which zero all but the
first k elements of a vector a, we can apply the recipe leading to equation (6). The Qi will
be appropriate Householder matrices. There are certain efficiency and numerical issues we
haven’t addressed, but the sequence of Householder transformations as presented above are
the basic technique used by most software for computing the QR factorization. And the QR
algorithm, properly implemented, is very stable numerically.

Solving Least-Squares Problems with QR Decomposition

Let’s return to Ax = b. We factor A = QR to obtain

QRx = b.

Multiply both sides by QT to find
Rx = QTb.

Now for simplicity let’s consider the case where R is of full column rank. This means that
R has non-zero elements in positions Rkk for k = 1 to n. This is certainly the generic case.
In this case we can write

R =

[
R1

0

]
where R1 is an n by n invertible upper triangular matrix and 0 means an m−n by n matrix
of zeros. We can write Rx = QTb as[

R1

0

]
x =

[
c1
c2

]
(10)

where c1 is the first n components of QTb and c2 the last m− n components. This matrix
equation is really two equations, namely R1x = c1 and 0x = c2. We can’t do anything with
the second equation—no matter what the value of x, the equation 0x = c2 will never be
satisfied (unless we’re so lucky that c2 = 0). But we can solve the first equation R1x = c1
exactly (since R1 is invertible), by doing a simple backsubstitution. Moreover, since Q is
orthogonal we have (for any choice of x) that

∥Ax− b∥2 = ∥QRx− b∥2

= ∥Rx−QTb∥2

= ∥R1x− c1∥2 + ∥c2∥2. (11)

We clearly minimize the right side of equation (11) (and hence the value of ∥Ax − b∥) by
taking x so that R1x = c1, which yields the least-squares solution.

6

Example:

Let

A =

 1 2
0 1
1 1

 , b =

 1
0
2

 .
Then A = QR with

Q =


√
2
2

√
6
6

√
3
3

0
√
6
3

−
√
3
3√

2
2

−
√
6
6

−
√
3
3

 , R =


√
2 3

2

√
2

0
√
6
2

0 0

 .
Then Rx = QTb becomes


√
2 3

2

√
2

0
√
6
2

0 0

 [x1

x2

]
=


3
2

√
2√
6
6√
3
3

 .
This yields equation

√
6
2
x2 =

√
6
6

from which we obtain x2 = 1/3. The first equation then
yields x1 = 1. This is the least squares solution to Ax = b.

Stability

The QR decomposition is a more stably way to solve the linear least squares problem.
We won’t do a detailed analysis, but let’s reconsider the problem from above in which

A =

 1 1
ϵ −2ϵ
0 0

 , b =

 1
0
1


with ϵ = 0.00001. If you QR factor A you obtain (using 10 significant figure arithmetic)

Q =

 1.0 0.00001 0.0
0.00001 −1.0 0.0
0.0 0.0 1.0

 , R =

 −1.0 −1.0
0.0 0.00003
0.0 0.0

 .
and then form Rx = QTb, which leads to equations 1.0x1 + 0.9999999997x2 = 1.0 and
0.00003x2 = 0.00001, with solutions x1 = 0.6666666668 and x2 = 0.3333333333, which are
correct to 9 places.

7

