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1 Introduction

Let D be a bounded region in lRn, with x = (x1, . . . , xn). We seek a function
u(x) which satisfies

4u = 0 in D, (1)

u = h on ∂D (2)

OR
∂u

∂n
= g on ∂D. (3)

We’ve shown that if a solution exists, it’s unique (though only up to an
additive constant for the Neumann boundary condition; in this case there’s
also a requirement on g). We’ve also shown other interesting properties
possessed by any solution, e.g., the maximum principle and the mean value
property.

Existence is actually the toughest issue. On certain special domains like
rectangles and circles/spheres it becomes much easier. We’ll look at those
first, then at the more general problem.

2 Solving Laplace’s Equation

2.1 Rectangles

Let D be the rectangle (square, really) 0 ≤ x, y ≤ 1 in two dimensions, where
I’m now using conventional (x, y) coordinates, instead of (x1, x2).
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You’ll easily see how to generalize what we do to other rectangular two-
dimensional regions, and even n dimensions. Let’s look at the case of Dirich-
let boundary conditions, so we want a function u(x, y) defined for 0 ≤ x, y ≤ 1
with u = h for some function h defined on ∂D. Let’s split h into four parts:
h1 will be defined as equal to h on the top of the rectangle and be zero on
the other three sides; similarly for h2, h3, and h4, as illustrated above. We’ll
solve Laplace’s equation by splitting the solution u into four corresponding
parts, u = u1 + u2 + u3 + u4 where 4uj = 0 and uj = hj on ∂D.

Let’s start by solving for u1. The other three pieces will obviously be
similar. Separate variables by assuming that a solution to Laplace’s equation
can be written as u1(x, y) = X(x)Y (y). Plug this into Laplace’s equation to
find that

−X ′′(x)

X(x)
=

Y ′′(y)

Y (y)
= λ

for some constant λ. The constant λ can be positive, negative, or zero. Let’s
assume for the moment that λ is positive; you can verify that when we’re
looking for u1 or u3 this is the only interesting choice, while if we’re looking
for u2 or u4 then we’d take λ < 0. For positive λ the general solution for X
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and Y is

X(x) = c1 cos(
√

λx) + c2 sin(
√

λx),

Y (y) = c3e
√

λy + c4e
−
√

λy

for some constants c1, c2, c3, c4. We need u1(0, y) = 0 (this is the left side).
This instantly forces c1 = 0. Also, then condition that u1(1, y) = 0 on the
right forces λ = k2π2. We conclude that X(x) = c2 sin(kπx) for some integer
k. Finally, the condition that u1(x, 0) = 0 on the bottom forces us to choose
c3 = −c4. All in all then the product X(x)Y (y) looks like

X(x)Y (y) = c sin(kπx)(ekπy − e−kπy)

for some integer k, where I’ve lumped all constants together into one constant,
c. Of course, any linear combination of solutions will again be a solution.
We ought to take u1(x, y) of the form

u1(x, y) =
∞∑

k=1

ck sin(kπx)(ekπy − e−kπy). (4)

Exercise: Suppose we’re looking for the harmonic function on D with Dirich-
let data h2(y) on the right (x = 1) side of D; why should we take λ < 0 in

−X′′(x)
X(x)

= Y ′′(y)
Y (y)

= λ? What equation is obtained in place of (4)?

How do we get the constants ck in equation (4)? With the boundary
condition, u1(x, 1) = h1(x), of course! Note that h1(x) can be expand into a
sine series in x, as

h1(x) =
∞∑

k=1

dk sin(kπx) (5)

where

dk = 2
∫ 1

0
h1(x) sin(kπx) dx

for k ≥ 1. From equation (4) we also find that

u1(x, 1) =
∞∑

k=1

ck sin(kπx)(ekπ − e−kπ). (6)
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Match coefficients on the right of (5) and (6) to find that if we take ck =
dk

ekπ−e−kπ in equation (4) we have the solution u1(x, y) given by

u1(x, y) =
∞∑

k=1

dk
ekπy − e−kπy

ekπ − e−kπ
sin(kπx). (7)

But if you’ve been awake in the course so far you should realize that there
is the slightly delicate issue of whether this series solution (7) really makes
any sense, i.e., converges and defined a truly differentiable function with the
correct boundary values. Recall the following Theorem, which we used in
analyzing the heat equation:

Theorem 1 Let φk, k ≥ 1, be a sequence of functions defined on an in-
terval [a, b]. Suppose that each φk ∈ C1([a, b]). Let Mk = supa<x<b |φ′k|. If∑∞

k=1 Mk < ∞ then the series
∑

k φ′k and
∑

k φk converge uniformly on [a, b].
If φ =

∑
k φk then φ ∈ C1([a, b]) and

φ′(x) =
∑

k

φ′k(x)

for a ≤ x ≤ b.

The theorem can be used to show that the series solution (7) is differentiable
in both x and y, in fact, infinitely differentiable. To see this, think of y as
fixed, 0 < y < 1, and the series (7) as a series in sin(kπx). Apply the theorem

above with φk(x) = kπdk
ekπy−e−kπy

ekπ−e−kπ sin(kπx); note that we would then take

Mk =

∣∣∣∣∣kπdk
ekπy − e−kπy

ekπ − e−kπ

∣∣∣∣∣ .

It’s not hard to show that (since
∑

k d2
k < ∞, so the dk are bounded) the se-

ries
∑

k Mk converges (because the terms ekπy−e−kπy

ekπ−e−kπ die off very rapidly with
respect to k if y ∈ (0, 1).) Thus u1(x, y) is differentiable term-by-term in x,
and you can apply the argument again to get second derivatives (or higher)
in x. A very similar argument (fix x, treat u1 as a series in y) works to show
that u1 is differentiable in y, so (7) really does defined a function which is C2.

Exercise: Fill in the details that
∑

k Mk < ∞.
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As for the boundary values, an elementary argument quite similar to what
we did for the 1D heat equation (and which we’ll repeat on circular domains
momentarily anyway) shows that limt→0+ u(x, t) = f(x) for our tentative
solution u(x, t)) shows that

lim
x→0+

‖u1(x, y)‖2 = lim
x→1−

‖u1(x, y)‖2 = lim
y→0+

‖u1(x, y)‖2 = 0

where ‖φ‖2 is the L2(0, 1) norm of φ. Also,

lim
y→1−

‖u1(x, y)− h1(x)‖2 = 0.

So u1 has the correct boundary values, in the sense of L2 distance. If h1 is
smooth enough you can replace the L2 norms with the supremum norm.

As remarked above, the same procedure could clearly be done for the other
three sides, and for any other rectangular region. This shows the existence of
a solution to Laplace’s equation on a rectangular region, provided that the
Fourier series converge rapidly enough.

2.2 Circular Regions and the Laplacian in Polar Coor-
dinates

Dealing with Laplace’s equation on circles is much easier if we switch to po-
lar coordinates, so that all derivatives will be with respect to r and θ, not
x and y. You should recall that the formulae relating rectangular and po-
lar coordinates are x = r cos(θ), y = r sin(θ) (polar to rectangular) and
r =

√
x2 + y2, θ = ± arctan(y, x) (rectangular to polar). The function

arctan(y, x) is defined as arctan(y/x) for (x, y) in the first or fourth quad-
rants, and as arctan(y/x)+π or arctan(y/x)−π for (x, y) in the second and
third quadrants, respectively.

Suppose that u(x, y) is any function defined in terms of rectangular coor-
dinates. We consider a “new” function v, identical to u, but defined in polar
coordinates according to v(r, θ) = u(x, y). If we use the relations between
polar and rectangular coordinates this is the same as

u(x, y) = v(
√

x2 + y2, arctan(y, x)).
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Differentiate both sides above with respect to x. With the chain rule you
find that

∂u

∂x
=

x√
x2 + y2

∂v

∂r
− y

x2 + y2

∂v

∂θ
,

= cos(θ)
∂v

∂r
− sin(θ)

r

∂v

∂θ
.

Put into differential operator form, this tells us how to translate ∂
∂x

into polar
coordinates, as

∂

∂x
= cos(θ)

∂

∂r
− sin(θ)

r

∂

∂θ
. (8)

For example, consider the function u(x, y) = x2. Then ∂u
∂x

= 2x. In polar
coordinates we have u(r, θ) = r2 cos2(θ). Apply the differential operator
on the right side of equation (8) to obtain 2r cos3(θ) + 2r sin2(θ) cos(θ) =
2r cos(θ)(cos2(θ) + sin2(θ)) = 2r cos(θ) which is just 2x back in rectangular
coordinates.

The same procedure applied to ∂
∂y

shows that

∂

∂y
= sin(θ)

∂

∂r
+

cos(θ)

r

∂

∂θ
. (9)

We compute ∂2

∂x2 in polar coordinates by applying ∂
∂x

to itself (all in polar, of
course). If the abstract differential operator form bothers you, stick in some
unspecified function v(r, θ) when you do the derivatives. In any case, you’ll
get a BIG mess for both ∂2

∂x2 and ∂2

∂y2 . However, when you add and start
cancelling you find that

∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
. (10)

This is the Laplacian in polar coordinates.

2.3 Solving Laplace’s Equation on a Disk

Given the form of the Laplacian in polar coordinates, it’s natural to look for
harmonic functions which are separable in polar coordinates, that is, v(r, θ) =
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f(r)g(θ). If you plug this into Laplace’s equation in polar coordinates you
obtain

f ′′(r)g(θ) +
1

r
f ′(r)g(θ) +

1

r2
f(r)g′′(θ) = 0.

Multiply through by r2

f(r)g(θ)
and this becomes

r2f ′′(r)
f(r)

+ r
f ′(r)
f(r)

+
g′′(θ)
g(θ)

= 0.

The usual argument shows that we must have

r2f ′′(r)
f(r)

+ r
f ′(r)
f(r)

= λ, (11)

g′′(θ)
g(θ)

= −λ (12)

for some constant λ. The choice λ < 0 turns out not to be useful (try it). If
λ > 0 then we obtain

g(θ) = c1 cos(
√

λθ) + c2 sin(
√

λθ).

But if we want the solution to be periodic (so that v(r, θ) is continuous) then
we need g(0) = g(2π). This forces us to choose

√
λ = k, or λ = k2, where k

is any integer (even 0 or negative), so we have

g(θ) = c1 cos(kθ) + c2 sin(kθ).

The general solution to equation (11) is f(r) = c3r
√

λ + c4r
−
√

λ. With
λ = k2 this becomes

f(r) = c3r
k + c4r

−k.

The plus and minus values of k are redundant—since k can be an arbitrary
integer, we might as well just take f(r) = crk. All in all, any functions of
the form

φ(r, θ) = rk cos(kθ), φ(r, θ) = rk sin(kθ) (13)

are harmonic, for any integer k. Of course if k < 0 then these solutions are
singular at the origin.

As remarked above λ < 0 in (11) and (12) leads nowhere. However, we
can also take λ = 0. In this case we find that if g is to be periodic then we
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must take g(θ) to be constant. Equation (11) also becomes easy to solve in
this case, and the solution is f(r) = c1 + c2 ln(r). Take the product f(r)g(θ)
to see that anything of the form

u(r, θ) = c1 + c2 ln(r) (14)

is also harmonic. If c2 6= 0 then this solution is singular at the origin—in
fact, with c1 = 0 and c2 = 1

2π
we obtain the Green’s function.

We can use the harmonic functions in (13) and (14) to solve Laplace’s
equation on a disk in two dimensions. For simplicity, let’s use the unit disk.
Let’s parameterize the boundary of the disk as (cos(θ), sin(θ)) for 0 ≤ θ < 2π.
We want to find v(r, θ) so that 4v = 0 and v(1, θ) = h(θ) for some specified
boundary data h, which we’ll assume is in L2(0, 2π). We’ll try to write the
solution as a sum of the basic solutions given in (13) and (14), as

v(r, θ) = b0 +
∞∑

k=1

akr
k sin(kθ) + bkr

k cos(kθ). (15)

(Why did we exclude the ln(r) and k < 0 cases?) If we want v(1, θ) = h(θ)
then what we really need is

v(1, θ) = b0 +
∞∑

k=1

ak sin(kθ) + bk cos(kθ) = h(θ).

In other words, we need to expand h in terms of sines and cosines! We’ve
already done all this. The formulas are

b0 =
1

2π

∫ 2π

0
h(θ) dθ, (16)

ak =
1

π

∫ 2π

0
sin(kθ)h(θ) dθ, (17)

bk =
1

π

∫ 2π

0
cos(kθ)h(θ) dθ. (18)

With this choice for the coefficients, equation (15) represents a solution to
Laplace’s equation on the disk, provided that the infinite series makes sense.

The solution (15) really does represent a C2 solution to the problem. To
see this we use Theorem 1. First, let’s just consider the solution (15) with
the cosine terms (we can do what follows for the sine separately, then put the

8



results together). First we’ll show that v is differentiable in θ. Fix a value of
r with 0 ≤ r < 1 and let φk(θ) = bkr

k cos(kπθ), so φ′k(θ) = −kπbkr
k sin(kπθ).

We can take Mk = kπ|bk|rk. Now if the function h is L2 then
∑

k b2
k < ∞

and then supk |bk| ≤ B for some B. In this case

∞∑

k=1

Mk ≤ Bπ
∞∑

k=1

krk =
Bπr

(r − 1)2
.

Thus v(r, θ) is differentiable in θ. Repeat the argument on the series expan-
sion of ∂v

∂θ
to find v is twice (in fact, infinitely) differentiable in θ. A similar

argument works to show v is infinitely differentiable in r for 0 ≤ r < 1.
Let’s also take a look at the behavior of v at the boundary. I claim that

limr→1− ‖v(r, θ) − h(θ)‖2 = 0, so v has the correct Dirichlet data in the L2

sense. To see this note that we have

h(θ)− v(r, θ) =
∞∑

k=1

(ak(1− rk) sin(kθ) + bk(1− rk) cos(kθ)). (19)

The orthogonality and completeness of the sin(kθ), cos(kθ) family shows that

‖h(θ)− v(r, θ)‖2
2 =

∞∑

k=1

c2
k(1− rk)2 (20)

where c2
k = a2

k + b2
k. Now since h ∈ L2(0, 2π) we have

∑
k c2

k = ‖h‖2
2 < ∞. As

a result, given ε > 0 we can choose some integer N such that

∞∑

k=N+1

c2
k < ε/2.

It follows that (since 0 < (1− rk)2 < 1)

∞∑

k=N+1

(1− rk)2c2
k < ε/2 (21)

for all r. From equation (20) we can conclude that

‖h(θ)− v(r, θ)‖2
2 =

N∑

k=1

c2
k(1− rk)2 + R(ε) (22)
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where R(r) =
∑∞

k=N+1(1− rk)2c2
k < ε/2. We can also choose some δ so that

N∑

k=1

c2
k(1− rk)2 < ε/2 (23)

for whenever |1−r| < δ. All in all we conclude from equations (21)-(23) that
for any given ε > 0 we can choose a δ such that for |1− r| < δ we have

‖h(θ)− v(r, θ)‖2
2 < ε.

This is the definition of limr→1− ‖h(θ)− v(r, θ)‖2
2 = 0.

Exercise: Derive a similar formula to (15) for constructing a harmonic
function v(r, θ) on the unit disk with boundary condition ∂v

∂n
= h(θ) for

some function h (note that on the boundary of the disk ∂v
∂n

= ∂v
∂r

). Where
does the requirement

∫
∂D h ds = 0 come into play?

2.4 Boundary Regularity

In PDE the term “regularity” has nothing to do with the bathroom. Rather,
it refers to how smooth or differentiable the solution to a PDE is. We’ve
shown that the solution v to Laplace’s equation we found above is twice-
differentiable inside the disk, and so we really can plug v into 4v = 0. But
the statement that v = h on ∂D is true only in the sense that limr→1− ‖h(θ)−
v(r, θ)‖2 = 0, not quite as strong as one might hope for. It would be more
“natural” if we could assert that limr→1− ‖h(θ) − v(r, θ)‖∞ = 0, so that
in particular u(r, θ) converges to h(θ) as r → 1. This isn’t true, though,
without additional conditions on the function h. To see this simply write out
a solution to Laplace’s equation with boundary data h(θ) = 0 for 0 ≤ θ < π,
h(θ) = 1 for π ≤ θ < 2π. The function h is L2, but the solution defined by
(15) won’t converge to h at the discontinuity at θ = π.

But if the function h is in C2([0, 2π]), that is, h has two continuous
derivatives everywhere on the boundary of the circle (including across θ = 2π)
then we can assert that limr→1− ‖h(θ) − v(r, θ)‖∞ = 0. (Actually, you can
get away with h being C1, but this is harder to prove). The following Lemma
will be useful for this purpose. It’s true on any interval [a, b], but I’ll just
state it for [0, 2π].
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Lemma 1 Suppose a function h ∈ C2([0, 2π]) with h(0) = h(2π) and h′(0) =
h′(2π). Let hn be the n term Fourier series for h, i.e.,

hn(x) = b0 +
n∑

k=1

(ak sin(kx) + bk cos(kx)) (24)

where the ak and bk are defined by equations (18). Then the functions hn

converge uniformly to h on [0, 2π], i.e.,

lim
n→∞ ‖h− hn‖∞ = 0.

Proof: The functions h′ and h′′ are continuous, hence in L2(a, b), and so
have Fourier expansions

h′(x) = b′0 +
n∑

k=1

(a′k sin(kx) + b′k cos(kx)) (25)

h′′(x) = b′′0 +
n∑

k=1

(a′′k sin(kx) + b′′k cos(kx)). (26)

Here the notation a′k simply denotes the corresponding coefficient of h′—the
prime isn’t any kind of derivative. It’s easy to work out these coefficients
and relate them to the ak and bk via integration by parts, e.g.,

a′′k =
1

π

∫ 2π

0
h′′(x) sin(kx) dx

= −k

π

∫ 2π

0
h′(x) cos(kx) dx = −kb′k

= −k2

π

∫ 2π

0
h(x) sin(kx) dx

= −k2ak.

In the integration by parts all endpoints terms are zero due to the periodicity
of the trig functions AND h or h′. In particular we have b′k = −a′′k/k and
a′k = b′′k/k (and it turns out that b′0 = b′′0 = 0).

Now I claim that
∑

k(|a′k|+ |b′k|) < ∞. To see this note that

∑

k

(|a′k|+ |b′k|) =
∑

k

|a′′k|
k

+
∑

k

|b′′k|
k
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≤
(∑

k

1/k2

)1/2



(∑

k

(a′′k)
2

)1/2

+

(∑

k

(b′′k)
2

)1/2



≤ π√
6




(∑

k

(a′′k)
2

)1/2

+

(∑

k

(b′′k)
2

)1/2



< ∞. (27)

where I’ve used the “discrete” version of the Cauchy-Schwarz inequality,∑
k xkyk ≤ (

∑
k x2

k)
1/2(

∑
k y2

k)
1/2 and the fact that

∑
k≥1 1/k2 = π2/6. Also,

we made use of the fact that h′′ is in L2(0, 2π) so that
∑

k((a
′′
k)

2 +(b′′k)
2) < ∞.

This proves the claim.
Now we’re in a position to use Theorem 1. We let the set of functions φk in

the theorem correspond to the functions ak sin(kx) or bk cos(kx)—it doesn’t
really matter how we choose the correspondence—and then note that the
derivatives of the φ′k(x) are either a′k cos(kx) or b′k sin(kx). In either case we
obtain values for the Mk in Theorem 1 which are either |a′k| or |b′k|. Thus
from the bound (27) we have

∑
k Mk < ∞. We can conclude from this that

the functions hn(x) converge uniformly to h(x) as n →∞, which is just what
Lemma 1 claims.

We can use this Lemma to show that if the Dirichlet data h ∈ C2([0, 2π])
with h(0) = h(2π), h′(0) = h′(2π) for the Laplacian then limr→1− ‖h(θ) −
v(r, θ)‖∞ = 0 as follows. First, we know from Lemma 1 that limn→∞ ‖h −
hn‖∞ = 0. In precise ε-N terms, given any ε > 0 we can find an N1 such
that

‖h− hn‖∞ < ε/3 (28)

for all n ≥ N1. Let un(r, θ) denote the solution (15) truncated at n terms.
Note that un has the same Fourier expansion as h, but with the coefficients
multiplied by rk. For any fixed r < 1 the very same argument as above shows
that limn→∞ ‖u(r, ·)− un(r, ·)‖∞ = 0, or that given any ε > 0 we can find an
N2 such that

‖u(r, ·)− un(r, ·)‖∞ < ε/3 (29)

for all n ≥ N2. Finally, we have

|hn(θ)− un(r, θ)| =

∣∣∣∣∣
n∑

k=1

(1− rk)(ak sin(kθ) + bk cos(kθ))

∣∣∣∣∣
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≤
n∑

k=1

(1− rk)(|ak|+ |bk|)

≤ (1− rn)
n∑

k=1

(|ak|+ |bk|)

= M(1− rn) (30)

where M =
∑n

k=1(|ak| + |bk|). We can choose r close enough to 1 so that
1 − rn < ε/3 (specifically, take r > (1 − ε/3)1/n). Then we obtain hn(θ) −
un(r, θ) < ε/3 for all θ, i.e.,

‖hn(θ)− un(r, θ)‖∞ < ε/3. (31)

Finally, note that inequalities (28), (29), and (31) yield, for n ≥ N =
max(N1, N2) and r > (1− ε/3)1/N ,

‖u(r, ·)− h‖∞ ≤ ‖u(r, ·)− un(r, ·)‖∞ + ‖hn(θ)− un(r, θ)‖∞ + ‖h− hn‖∞
< ε/3 + ε/3 + ε/3

= ε.

In other words, for any given ε > 0 if we choose r sufficiently close to 1, i.e.,
1 > r > (1 − ε/3)1/N , we have ‖u(r, ·) − h‖∞ < ε, which is precisely the
statement that

lim
r→1−

‖u(r, ·)− h‖∞ = 0.

2.5 Poisson’s Formula

It turns out that the Fourier series solution (15) can be written in another
very compact way. Jam the formulas for the ak and bk directly into equation
(15) to obtain

v(r, θ) =
1

2π

∫ 2π

0
h(α)dα

+
1

π

∞∑

k=1

rk
[
sin(kθ)

(∫ 2π

0
h(α) sin(kα) dα

)
+ cos(kθ)

(∫ 2π

0
h(α) cos(kα) dα

)]

=
1

2π

∫ 2π

0
h(α)dα +

1

π

∞∑

k=1

rk
[∫ 2π

0
h(α) cos(k(α− θ)) dα

]

=
1

2π

∫ 2π

0
h(α)

[
1 + 2

∞∑

k=1

rk cos(k(α− θ))

]
dα. (32)
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where we’ve used sin(kθ) sin(kα) + cos(kθ) cos(kα) = cos(k(α− θ)).
You can actually sum the term in square brackets in equation (32), as

follows. First, from cos(x) = eix+e−ix

2
we have

rk cos(k(α− θ)) = rk eik(α−θ) + e−ik(α−θ)

2
.

Use the standard formula x + x2 + x3 · · · = x
1−x

for the sum of a geometric
series (if |x| < 1) to find

1 + 2
∞∑

k=1

rk cos(k(α− θ)) = 1 +
∞∑

k=1

(rei(α−θ))k +
∞∑

k=1

(re−i(α−θ))k

= 1 +
rei(α−θ)

1− rei(α−θ)
+

re−i(α−θ)

1− re−i(α−θ)

=
1− r2

1− 2r cos(α− θ) + r2

after a bit of cancelling and algebra; note that since 0 ≤ r < 1 the identity
x + x2 + x3 · · · = x

1−x
with x = re±ik(α−θ) is valid here. Equation (32) then

becomes

v(r, θ) =
1− r2

2π

∫ 2π

0

h(α)

1− 2r cos(α− θ) + r2
dα, (33)

the Poisson integral formula. Equation (33) gives us the value of the har-
monic function at any point inside the ball in terms of the Dirichlet data
h.

As a computational too though the Poisson formula is a bit difficult to
use—you can’t usually work the integral, except numerically.

3 Solvability on a General Domain

Solvability of Laplace’s equation on a general domain, even in lR2, isn’t easy.
There are a number of different approaches to the problem, some fairly old,
some more modern, but there’s a fair amount of abstract analysis involved no
matter what approach you take. I’ll only sketch the idea behind one common
(and “modern”, as in the last hundred years) approach.

Consider the problem of finding a harmonic function u on a bounded
domain D in lRn. We want u = h on ∂D, where h is some given function;
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let’s suppose h is continuous, for simplicity. Let V denote the set of all
functions φ defined on D with the properties that φ = h on ∂D and also that
the quantity

Q(φ) =
∫

D
|∇φ|2 dx < ∞.

The last condition dictates that φ not be too nasty inside D; in particular,
∇φ should certainly exist. I claim that the minimizer of the functional Q is
the harmonic function we seek.

To see this, note that Q is clearly bounded below by zero, and so the
quantity

L = inf
φ∈V

Q(φ)

is well-defined. We can thus choose a sequence of functions φk ∈ V such
that Q(φk) → L as k → ∞. Now here’s the hard part, where some modern
functional analysis is needed: We can “arrange” for this sequence φk to
converge (in an appropriate sense) to some limit function in V , which I’ll call
u. We can show that Q(u) = L, so u is the minimizer of Q. I claim that u
is the solution to the boundary value problem.

The proof that u is what we want is a calculus of variations problem.
Consider perturbing u by a “small” function, to u + εη where η = 0 on ∂D
(so that u + εη has the correct boundary values, and so is in V ); let’s also
assume that η is C1. Then since u is a minimizer we have

0 ≤ Q(u + εη)−Q(u).

Write out the above inequality explicitly and simplify to obtain

0 ≤ 2ε
∫

D
∇η · ∇u dx + O(ε2).

The usual argument shows that for this to hold for all ε near zero we must
have ∫

D
∇η · ∇u dx = 0 (34)

for all differentiable η. From the Divergence Theorem

∫

D
∇ · (η∇u) dx =

∫

D
∇η · ∇u dx +

∫

D
η4 u dx =

∫

∂D
η
∂u

∂n
ds = 0 (35)
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since η ≡ 0 on ∂D. Equations (34) and (35) force

∫

D
η4 u dx = 0

for all η, so that 4u = 0 in D. By construction u = h on ∂D, and we’re
done!

Where in the above did I gloss over technical details? In several places
(though the argument is correct). In order to force the sequence φk to con-
verge, we have to let the set V contain functions for which ∇φ exists in a
rather generalized sense, specifically, as L2 functions rather than continuous
functions. But that raises the issue of whether the Divergence Theorem is
still valid for these functions. Also, the statement that φ = h on ∂D must
also be interpreted in a rather general sense, (a sort of L2 agreement, rather
than pointwise like you really want). And in order for all these arguments to
make sense, we have to use an “improved” type of integration, specifically,
Lebesgue integration. The Riemann stuff you saw in Calc II or reals isn’t
powerful enough to carry out these arguments!
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