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0.1 Introduction

We’ve solved the heat (and wave) equations in one space variable on the
whole real line (and the half-line). For the next couple weeks we’re going to
concentrate on solving them on a bounded interval, starting with the heat
equation. We want to understand existence, uniqueness, and stability for the
problem of finding a function u(x, t) which satisfies

∂u

∂t
− ∂2u

∂x2
= 0, (1)

u(x, 0) = f(x)

for a < x < b and t > 0, where f(x) is some given initial temperature. As
we’ve seen, we also need boundary conditions. At the left end x = a we
can take a Dirichlet condition of the form u(a, t) = 0, or more generally,
u(a, t) = h(t) for some specified function h(t); this corresponds to knowing
or controlling the temperature at the left end of the bar. Alternatively, we
can take a Neumann boundary condition of the form ux(a, t) = g(t) for some
specified function g(t) (g ≡ 0 is common); this corresponds to knowing or
controlling the rate at which heat energy enters or leaves the left end of the
bar. We can make a similar choice or boundary conditions at x = b. There
are also many other boundary conditions possible; we’ll look some later.

As it turns out proving the existence of solutions to the heat equation on
a bounded domain is a bit difficult. We’ll start by examining the uniqueness
and stability properties.

0.2 The Maximum Principle

The maximum principle is a remarkable property of the heat equation (other
PDE’s also have such a property; it usually turns out to be very useful). For
simplicity we’ll restrict our attention to the interval 0 ≤ x ≤ 1, although
everything goes through on any other interval. Let R be the rectangle 0 ≤
x ≤ 1, 0 ≤ t ≤ T , let B denote the union of the sides t = 0, x = 0,and x = 1
(all but the top), and let M denote the maximum value of u over B. Refer
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to the figure below.

The Maximum Principle: If u(x, t) satisfies the heat equation for 0 < x <
1 and 0 < t < T then the maximum value of u occurs at t = 0 (at the initial
condition) or for x = 0 or x = 1 (at the ends of the rod). More precisely,

sup
R

u(x, t) = sup
B

u(x, t).

Note that the boundary conditions aren’t even mentioned—it’s true re-
gardless. Also, the maximum principle doesn’t preclude u also attaining
the maximum value away from B; it’s just that the maximum must also be
attained on B.

The basic idea of the proof is from calculus, with a slight subtlety. At an
interior maximum (x0, t0) the first derivative ut(x0, t0) = 0. Also, if (x0, t0) is
a maximum then we must have uxx(x0, t0) ≤ 0 (since if uxx(x0, t0) > 0 then
the function u(x, t0) of x would be concave up near x = x0, and so couldn’t
have a maximum at x = x0). So we must have uxx(x0, t0) ≤ 0. A strict
inequality uxx(x0, t0) < 0 is easy to rule out, for given that ut(x0, t0) = 0
we’d then have ut−uxx > 0 at (x0, t0), contradicting the fact that u satisfies
the heat equation. But the possibility that ut(x0, t0) = 0 isn’t so easy to rule
out.

So we use a silly little trick to get around this. Define a new function
v(x, t) as

v(x, t) = u(x, t) + εx2

where ε > 0. You can check that vt − vxx = −2ε < 0.
The first claim is that v(x, t) must attain its maximum value on R on one

of the sides t = 0, x = 0, or x = 1. To see this, first note that the maximum
cannot be inside R, for at that point we’d have vt = 0 and vxx ≤ 0 (just as
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for u above), violating vt − vxx = −2ε < 0 (note that the strict inequality
ε > 0 saves us here). So the maximum for v occurs on one of the four sides,
x = 0, x = 1, t = 0, or t = T . But it can’t occur on the top side t = T :
suppose it does occur there, at some point (x0, T ). Then again we’d have
vxx(x0, T ) ≤ 0, and also vt(x0, T ) ≥ 0, for

vt(x0, T ) = lim
h→0+

v(x0, T )− v(x0, T − h)

h
≥ 0

since by assumption v(x0, T ) ≥ v(x0, T − h). But this would imply that
vt(x0, T ) − vxx(x0, T ) ≥ 0, a contradiction to vt − vxx = −2ε < 0. Since the
maximum can’t occur on t = T it must occur on B, that is,

sup
R

v(x, t) ≤ sup
B

v(x, t) (2)

Now from v(x, t) = u(x, t) + εx2 we have

sup
B

v(x, t) ≤ sup
B

u(x, t) + sup
B

εx2 = M + ε. (3)

From u(x, t) = v(x, t)− εx2 and 0 ≤ x ≤ 1 it’s obvious that

sup
R

u(x, t) ≤ sup
R

v(x, t). (4)

Stringing together inequalities (4), (2), and (3) (in that order) shows that

sup
R

u(x, t) ≤ M + ε (5)

for any ε > 0, forcing supR u ≤ M . Of course since u is continuous we have to
actually have equality, so supR u = M . This proves the maximum principle.

By considering the function −u(x, t), the same argument shows that the
minimum must also occur on the same portion of the boundary.

0.3 Uniqueness and Stability

The maximum principle makes uniqueness and stability easy. We showed
that if two solutions to the heat equation have initial conditions which are
close in the L2 norm then the solutions at any time are close in L2. This is also
true in the supremum norm. Suppose that u1(x, t) and u2(x, t) are solutions
to the heat equation on (0, 1), both with boundary conditions u1(0, t) =
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u2(0, t) = a(t) and u2(1, t) = u2(1, t) = b(t) for some functions a(t) and b(t).
Suppose the initial conditions are u1(x, 0) = f1(x) and u2(x, 0) = f2(x), and
let M = sup0<x<1 |f2(x) − f1(x)|. Then sup0<x<1 |u1(x, t) − u2(x, t)| ≤ M
for all t > 0. In other words, if u1 and u2 start with close initial conditions,
they’ll stay close for all time. The proof is easy. Let v = u2 − u1. Then v
satisfies the heat equation with zero boundary conditions and initial condition
f2(x) − f1(x). By the maximum principle the maximum (and minimum)
value of v occurs on t = 0, x = 0, or x = 1. But on x = 0 and x = 1
the function v is identically zero. So the maximum and minimum values of
v are either zero, or occur when t = 0. Either way, |v(x, t)| cannot exceed
sup0<x<1 |v(x, 0)| = sup0<x<1 |f2(x)− f1(x)|.

Of course, this immediately implies that the heat equation has a unique
solution for given boundary conditions and initial data. If two solutions agree
on the three sides t = 0, x = 0, x = 1 then the maximum absolute value of
their difference over R is zero, i.e., they’re the same everywhere.
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