
More on the Heat Equation
MA 436

Kurt Bryan

Recap

We’ve solved the heat equation ∂u
∂t

− ∂2u
∂x2 = 0 on the interval 0 < x < 1

with initial condition u(x, 0) = f(x) for f ∈ L2(0, 1) and boundary conditions
u(0, t) = u(1, t) = 0. The same procedure allows us to solve on a general
interval a < x < b, though it’s just a bit messier.

Today we’ll look at a few variations on the heat equation, boundary and
initial conditions.

Zero Neumann Boundary Conditions

Consider solving the heat equation for 0 < x < 1 with u(x, 0) = f(x)
for f ∈ L2(0, 1) and Neumann boundary conditions ux(0, t) = ux(1, t) = 0.
Recall that separable solutions to the heat equation must be of the form
ce−λ2t cos(λx) or ce−λ2t sin(λx) for some λ. The Neumann boundary con-
dition at x = 0 this time eliminates the choice ce−λ2t sin(λx). We’re left
with ce−λ2t cos(λx), and the condition ux(1, t) = 0 forces λ = kπ, just like
before. Since cos(−x) = cos(x), it’s not hard to see we need only consider
k ≥ 0. We thus seek solutions of the form u(x, t) =

∑
k cke

−k2π2t cos(kπx).
The family ϕk(x) =

√
2 cos(kπx) for k ≥ 1, with ϕ0(x) = 1, forms a complete

orthonormal family in L2(0, 1). We can thus construct solutions as

u(x, t) =
∞∑
k=0

cke
−k2π2tϕk(x).

Choose the ck as ck = (f, ϕk) for k ≥ 0. The same analysis as before shows
that this really does define a solution to the heat equation with the proper
boundary and initial conditions.

The Non-Homogeneous Heat Equation

Consider trying to solve the non-homogeneous heat equation

∂u

∂t
− ∂2u

∂x2
= F (x, t) (1)
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for 0 < x < 1, 0 < t, for some function F , with boundary conditions u(0, t) =
u(1, t) = 0 and initial condition u(x, 0) = f(x).

First, we’ll work with the orthonormal family ϕk(x) =
√
2 sin(kπx) on

L2(0, 1). For each fixed time t we can write out a Fourier series for F (x, t),
as a function of x, as

F (x, t) =
∞∑
k=1

ck(t)ϕk(x) (2)

where ck(t) = (F (·, t), ϕk), where (F (·, t), ϕk) means the inner product of
F (x, t) (as a function of x) with ϕk. Note that ck really does depend on t. It
seems clear that we should require the function F (x, t) to be in L2(0, 1), as
a function of x, for each fixed t > 0.

We seek a solution u(x, t) to the non-homogeneous heat equation as

u(x, t) =
∞∑
k=1

qk(t)ϕk(x) (3)

for appropriately chosen functions qk(t). In fact, if we apply the heat operator
to u(x, t) (term by term, and use ϕ′′

k = −k2π2ϕk) we obtain

∂u

∂t
− ∂2u

∂x2
=

∞∑
k=1

(q′k(t) + k2π2qk(t))ϕk(x). (4)

We want ∂u
∂t

− ∂2u
∂x2 = F , so match the right sides of equations (2) and (4);

specifically, match each ϕk coefficient to obtain

q′k(t) + k2π2qk(t) = ck(t) (5)

for k ≥ 0, an infinite family of linear, constant coefficient, first order ODE’s
for unknown functions qk(t). Each such ODE requires an initial condition,
which comes from u(x, 0) = f(x). Specifically, plug t = 0 into (3) to find we
need ∞∑

k=1

qk(0)ϕk(x) = f(x)

so we should choose qk(0) = (f, ϕk) for k ≥ 0.
So the prescription for solving equation (1) with boundary conditions

u(0, t) = u(1, t) = 0 and initial condition u(x, 0) = f(x) is this: Compute
the functions ck(t) = (F (·, t), ϕk), then solve each of the linear ODE’s (5) with
initial condition qk(0) = (f, ϕk). The solution u(x, t) is given by equation (3).
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By the way, it’s easy to solve equation (5); just use integrating factor
ek

2π2t.

General Boundary Conditions

Let’s look at solving ∂u
∂t

− ∂2u
∂x2 = F with u(x, 0) = f(x) and general

Dirichlet boundary conditions u(0, t) = h0(t), u(1, t) = h1(t), where h0 and
h1 are some given functions. This is really easy, given the computations we’ve
already done.

Let v(x, t) be any function which satisfies the boundary conditions v(0, t) =
h0(t), v(1, t) = h1(t), say

v(x, t) = h0(t) + x(h1(t)− h0(t)).

Note that ∂v
∂t
− ∂2v

∂x2 = h′
0(t)+x(h′

1(t)−h′
0(t)); define G(x, t) = h′

0(t)+x(h′
1(t)−

h′
0(t)). Also let g(x) = v(x, 0) = h0(0) + x(h1(0)− h0(0)) (so g is the initial

condition for v). Let w(x, t) be the solution to ∂w
∂t

− ∂2w
∂x2 = F −G with initial

condition w(x, 0) = f(x)− g(x) and boundary conditions w(0, t) = w(1, t) =
0. Note that we know how to construct w from the computations of the last
section.

You can easily check that the solution u we seek is given by u = v + w.
Of course all of this requires that the functions F, f, h0, and h1 satisfy some
modest regularity conditions, but we won’t dwell on that.

A very similar procedure can be used to obtain general Neumann bound-
ary conditions.
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