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Recap

We’ve solved the heat equation % — % = 0 on the interval 0 < z < 1
with initial condition u(x,0) = f(z) for f € L?*(0,1) and boundary conditions
u(0,t) = u(1,t) = 0. The same procedure allows us to solve on a general
interval a < x < b, though it’s just a bit messier.

Today we’ll look at a few variations on the heat equation, boundary and
initial conditions.

Zero Neumann Boundary Conditions

Consider solving the heat equation for 0 < z < 1 with u(z,0) = f(x)
for f € L?(0,1) and Neumann boundary conditions u,(0,t) = u,(1,t) = 0.
Recall that separable solutions to the heat equation must be of the form
ce Mt cos(Az) or ce *'sin(\z) for some A. The Neumann boundary con-
dition at = = 0 this time eliminates the choice ce™**sin(Az). We're left
with ce " cos(Az), and the condition u,(1,t) = 0 forces A\ = km, just like
before. Since cos(—z) = cos(x), it’s not hard to see we need only consider
k > 0. We thus seek solutions of the form u(z,t) = ¥, cre ¥ cos(kmz).
The family ¢y (2) = v/2 cos(knz) for k > 1, with ¢o(x) = 1, forms a complete
orthonormal family in L?(0,1). We can thus construct solutions as

o0

u(zx,t) = Z cke_k2“2t¢k(a:).

k=0

Choose the ¢ as ¢ = (f, ¢x) for k > 0. The same analysis as before shows
that this really does define a solution to the heat equation with the proper
boundary and initial conditions.

The Non-Homogeneous Heat Equation

Consider trying to solve the non-homogeneous heat equation
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for 0 < x < 1, 0 < t, for some function F', with boundary conditions u(0,t) =
u(1,t) = 0 and initial condition u(z,0) = f(x).

First, we’ll work with the orthonormal family ¢x(x) = v/2sin(k7x) on
L?(0,1). For each fixed time ¢ we can write out a Fourier series for F(z,t),

as a function of z, as
o0

F(z,t) =) c(t)on(a) (2)

k=1
where ¢ (t) = (F(-,t), ¢x), where (F(-,t), ¢x) means the inner product of
F(z,t) (as a function of ) with ¢;. Note that ¢, really does depend on t. It
seems clear that we should require the function F'(z,t) to be in L?(0,1), as
a function of z, for each fixed t > 0.

We seek a solution u(z,t) to the non-homogeneous heat equation as

ule,t) = f: 0(t)bu(a) 3)

for appropriately chosen functions g (t). In fact, if we apply the heat operator

to u(z,t) (term by term, and use ¢} = —k*72¢;) we obtain
ou *u &
o~ a5 = 2 (@(t) + KT (t) gr (). (4)
ot Ox? kz::l k

We want % — ‘32772‘ = F', so match the right sides of equations (2) and (4);
specifically, match each ¢y coefficient to obtain

(1) + K2 qi(t) = e(t) (5)

for k > 0, an infinite family of linear, constant coefficient, first order ODE’s
for unknown functions ¢x(t). Each such ODE requires an initial condition,
which comes from wu(z,0) = f(z). Specifically, plug ¢ = 0 into (3) to find we
need

g 0(0)6(2) = f(x)

so we should choose ¢(0) = (f, ¢x) for k > 0.

So the prescription for solving equation (1) with boundary conditions
u(0,t) = u(1,t) = 0 and initial condition u(x,0) = f(z) is this: Compute
the functions cx(t) = (F(-, 1), ¢x), then solve each of the linear ODE’s (5) with
initial condition g, (0) = (f, k). The solution u(z,t) is given by equation (3).
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By the way, it’s easy to solve equation (5); just use integrating factor
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General Boundary Conditions

Let’s look at solving 2% — % = F with u(z,0) = f(x) and general
Dirichlet boundary conditions u(0,t) = ho(t),u(1,t) = hy(t), where hy and
hi are some given functions. This is really easy, given the computations we’ve
already done.

Let v(z, t) be any function which satisfies the boundary conditions v(0,¢) =
hO(t)w'U(Lt) = hl(t)7 say

(@, t) = ho(t) + (ki (t) — ho(t)).

Note that %’;—% = h{(t)+x(hy(t)—hy(t)); define G(x,t) = hy(t)+x(h)(t)—
hi(t)). Also let g(z) = v(x,0) = ho(0) + 2(h1(0) — ho(0)) (so g is the initial
condition for v). Let w(z, t) be the solution to 2% — ‘327%’ = F'— G with initial
condition w(zx,0) = f(x) — g(x) and boundary conditions w(0,t) = w(1,t) =
0. Note that we know how to construct w from the computations of the last
section.

You can easily check that the solution u we seek is given by v = v + w.
Of course all of this requires that the functions F| f, hg, and h; satisfy some
modest regularity conditions, but we won’t dwell on that.

A very similar procedure can be used to obtain general Neumann bound-

ary conditions.



