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Derivation

Consider a “one-dimensional” material bar of indeterminate length. As
usual ¢ will denote time and x for position. We're interested in modelling the
behavior of heat in the bar, or more specifically, the temperature of the bar
over time (maybe heat is being applied to the ends of the bar, or it starts
with some non-uniform temperature distribution). This can be approached
using conservation principles.

We'll let u(z,t) denote the temperature of the bar at position x and time
t. We'll think of u as being related to the “thermal energy density” p(z,t)
of the bar (on a per length basis) by p = ¢ + cyu, where ¢y and ¢; are some
fixed constants. The constants ¢y and ¢; depend on the system of units used
to measure temperature. (Note: in reality ¢; isn’t constant, but depends on
u, and possibly other factors). The total thermal energy in the bar between
2 = a and z = b at time ¢ is thus given by [? p(z,t) dx = [*(co+ cru(z, 1)) dz.
Let q(z,t) denote the rate at which heat energy flows past the point x at
time ¢; the dimension of ¢ is simply energy per time.

If heat energy is conserved in the bar then the continuity equation

holds. In order to model the flow of heat completely we need a constitutive
relation between p and gq.

A thought experiment is helpful here: suppose that at a certain time t,
p(x,t) increases linearly in z, say p(x,t) = ax for some positive constant a.
In this case the flow of heat ¢(z, )t should be in the NEGATIVE z direction,
since heat flows from hot to cold. Moreover, the larger a is (the steeper the
temperature gradient) the faster heat should flow. Thus it makes sense that

q is proportional to a, say ¢ = —ka for some positive constant k. The same
reasoning holds if p decreases linearly in x, say p = —ax. More generally, it
makes sense to take
= -+2 )
1= dx

for some k > 0 as the constitutive relation. This relation makes heat flow
from hot to cold, in proportion to the local temperature gradient. The con-



stant k& depends on the material out of which the bar is made and is related
to the “thermal diffusivity” of the material.
Using equation (2) to substitute out ¢ in the continuity equation (1) yields

This is the PDE that p must obey and is call the “heat equation”. It’s easy
(use p = ¢p + c1u)) to see that the temperature u obeys the same equation.
We’ll usually work in terms of the temperature u, since it’s a more familiar
quantity.

There’s another situation in which the heat equation frequently appears:
when p(z,t) denotes the concentration of some substance dissolved in a
medium in which the substance can diffuse. For example, p(x,t) could be the
concentration of some pollutant in water. Most substances naturally “spread
out” or diffuse from high concentrations to lower concentrations (just like
heat), and so the heat equation is often a good description of this situation.
The heat equation is in fact often called the diffusion equation.

Initial and/or Boundary Conditions

We'll concentrate of the case k = 1, so we seek a solution u(zx,t) to
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for t > 0 and z ranging over the bar of interest. In order to solve the heat
equation we need an initial condition of the form

u(z,0) = ¢(x) (4)

for some initial temperature distribution ¢(x) and each x in the bar, to
specify the starting temperature at each point. If the bar is of infinite length
then this is all we need (technically, we should also require u(x,t) to decay
to zero as |r| — oo; more on this later). If the bar is half-infinite or finite
then we need a boundary condition at each end.

There are two main types of boundary conditions. The first are the so-
called Dirichlet boundary conditions, in which we specify the temperature
of the bar at an endpoint, say z = 0, as u(0,t) = wu(t) for some specified
function ug. If there is another end of the bar, say at x = L, we would also
specify u(L,t) = ur(t) for some function wuyp,.
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The other common type of boundary condition is the Neumann condition,
in which we specify the rate at which heat energy is being pumped into the
ends of the bar. Now since ¢ = —cip, = —kciu, quantifies the rate of
heat flow, we typically specify conditions like —kcyu,(0,t) = ¥o(t) (the rate
heat ENTERS at x = 0) and kcyu,(L,0) = ¢.(t) (the rate heat ENTERS
at x = L) for functions 9y and ¢y. A very common Neumman boundary
condition is that no heat enters or leaves, so that u,(0,t) = u,(L,t) = 0 at
all times. These are called insulating boundary conditions. One can also mix
and match boundary conditions, i.e., have Dirichlet on one end and Neumann
on the other, assuming the bar has two ends.

The heat equation (3) together with an initial condition and (possibly)
boundary condition at each end turns out to be uniquely solvable.

Thought Problems

e Suppose a bar starts off with constant temperature u(x,0) = 10 and
the ends of the bar are insulated. What is u(z,t) for ¢ > 0?7 (Use
your intuition). Verify that your solution really does satisfy the heat
equation and Neumann boundary conditions.

e Verify that with & = 1 the function u(x,t) = e ™ *cos(mx) satisfies
the heat equation with insulating boundary conditions on the interval
0 < z < 1. What is the initial condition? Plot the solution as a
function of x for a few different times. Does it seem reasonable?

e Repeat the last problem but use u(z,t) = e ™7 cos(mmz) where m
is any integer.



