
Dimensional Analysis
Mathematical Modelling Week 2

Kurt Bryan

How does the escape velocity from a planet’s surface depend on the
planet’s mass and radius? This sounds like a physics problem, but you can
figure out a plausible answer without doing any real physics. The idea is
to use dimensional analysis, one of the most basic and useful techniques in
mathematical modelling.

Let’s take v for the escape velocity, m for the mass of the planet, R for
the planet radius, and, since it’s probably relevant, let’s toss in the universal
gravitational constant G. I haven’t specified any units yet, and I won’t.
The escape velocity v has the physical dimension length per time, which I’ll
denote by writing [v] = LT−1, where L means length and T means time.
Similarly, [m] = M , where M is mass. Then [R] = L and you can check
that [G] = L3T−2M−1, by either looking it up in a CRC handbook or using
the universal gravitational law F = Gm1m2/r

2. Note that the physical
dimension of a quantity like mass is not the same as the system of units used
to measure that physical quantity. For example, slugs, grams and kilograms
are all different systems of units for measuring mass, but mass is a physical
quantity independent of any system of units. A quantity is dimensionless if
it’s a pure number, without units. For example, π and 2 are dimensionless.
So are slopes (rise over run is dimensionless!) and angles (the definition
of “radian” involves the ratio of two lengths). The value of dimensionless
quantities doesn’t depend on the system of physical units.

Let’s hypothesize that the escape velocity can be expressed as a formula
of the form

v = kmαRβGγ (1)

where α, β and γ are numbers to be determined. The number k is some
dimensionless constant. Dimensional analysis proceeds on the observation
that physical laws have to balance dimensionally. Roughly speaking, no
number of apples can equal any number of oranges. Thus in equation (1),
whatever α, β and γ are, both sides of the equation must have the same
dimension. The dimension of the left side is LT−1; the dimension of the
right side is

[kmαRβGγ] = MαLβL3γT−2γM−γ = Mα−γLβ+3γT−2γ.
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If the two sides are to balance dimensionally, we must have

α− γ = 0,

β + 3γ = 1,

−2γ = −1.

The only solution is α = 1/2, β = −1/2, γ = 1/2, and so we conclude that
if a relation of the form (1) holds then

v = k

√
Gm

R
, (2)

where k is some dimensionless constant.

Exercise: Find a plausible formula for the lift (a force) generated by an
airplane wing, in terms of the density of the surrounding air, the area of the
wing, and the speed at which it moves through the air.

A Generalization

Now we’ll make dimensional analysis a bit more systematic, and examine
a powerful and general technique in this subject.

Let some physical situation be described by quantities q1, q2, . . . , qn. For
example, in the escape velocity problem we might take q1 = v, q2 = R, q3 =
m, q4 = G. We seek a physical law that relates the qi, in the form

f(q1, q2, . . . , qn) = 0

for a suitable choice of the function f . For example, equation (2) can be

written in this form with f(v,G, m, R) = v −
√

Gm/R = 0. But there

are always other possible choices for f also, for example, f(v,G, m, R) =
v2 − Gm/R = 0 is an entirely equivalent way to write the law, or even
f(v, G,m, R) = ev2−Gm/R − 1 = 0. It’s not hard to see that a physical law
always has infinitely many algebraically equivalent mathematical expressions.
We want to find any one such expression, by determining the function f .

One requirement we will impose is that the physical law should be unit
free. A physical law is said to be unit free if it holds regardless of the system
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of units used. For example, the escape velocity law v =
√

(Gm
R

) is unit free,
for it holds in any system of units. Similarly, the law for distance fallen in
the earth’s gravitational field, d = 1/2gt2, is unit free, while d = 4.9meters

sec2
t2

is valid only in certain systems of units (e.g., MKS).
Here is a central fact from dimensional analysis:

Buckingham’s Pi Theorem

Suppose we have a unit free physical law in the form

f(q1, q2, . . . , qn) = 0

where the qk are dimensional variables, and that from q1, . . . , qn we can form
m new independent dimensionless variables Π1, . . . , Πm (m ≤ n). Then
f(q1, . . . , qn) = 0 is equivalent to a physical law of the form

h(Π1, . . . , Πm) = 0

for some function h.

What does independent mean? Intuitively, to say that a variable q is
independent from variables q1, . . . qk means that the value of q cannot be
determined from q1, . . . qk. For example, the variables vR and v2R2 are NOT
independent; if you know either, you know the other. However, vR and vR2

are independent. You can’t tell what vR2 is by knowing vR, or vice versa.
More precisely, we’ll say q is independent of q1, . . . qk if q cannot be written
in the form q = qα1

1 · · · qαm
m for any choice of the exponents αi. A slightly

more sophisticated definition is given below.
Let’s redo the escape velocity example using the Pi theorem. Our dimen-

sional variables are v, R, m and G. According to the theorem, we should
first look for all independent dimensionless variables which can be formed
from these variables. Let

Π = vαRβmγGδ.

Since Π should be dimensionless we need

[vαRβmγGδ] = Lα+β+3δT−α−2δMγ−δ = 1,
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or

α + β + 3δ = 0,

−α− 2δ = 0,

γ − δ = 0.

A little algebra shows that there are infinitely many possibilities for α,β,γ,
and δ (there are 4 unknowns but only 3 equations) but that all of the solutions
are of the form

β =
1

2
α, γ = −1

2
α, δ = −1

2
α,

i.e., we can choose any α, but the other variables are then forced to satisfy
these relations. As a result,

Π = vαRα/2m−α/2G−α/2 =


v

√
R

mG




α

.

Note that different choices for α don’t lead to new independent variables for
Π. If we choose α = 1, we obtain some variable Π, while α = 2 merely
leads to Π2, which is not independent. Choosing a general constant α merely
gives Πα. To fix a specific choice, let’s take α = 1, and so our dimensionless

variable is Π = v
√

R/(mG).
According to the Pi theorem, any physical law involving the parameters

v,R,m, and G can be expressed as h(Π) = 0. This means that Π itself must
be constant—it’s just a root of h(x) = 0—so that Π = k for some dimen-
sionless constant k, which is exactly the statement of equation (2).

A More Sophisticated Example

Consider a small spherical ball being pushed by a force F through a
viscous liquid. We want to find the terminal velocity of the ball. Let’s
suppose that the velocity v depends on the force F , the density ρ of the liquid,
the viscosity µ of the liquid and the radius R of the ball. The dimensions of
each variable are [v] = LT−1, [F ] = MLT−2, [ρ] = ML−3, [µ] = ML−1T−1

(look viscosity up in a CRC if you want to know why—roughly, viscosity
is the internal “friction” of the liquid), and [R] = L. Let’s see how many
independent dimensionless variables we can form. Let

Π = vαF βργµδRη.
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Do the algebra to figure out conditions on the exponents so that the right
hand side is dimensionless; you will obtain

α + β − 3γ − δ + η = 0,

−α− 2β − δ = 0, (3)

β + γ + δ = 0.

This is a system of 3 equation in 5 unknowns; we expect to be able to pick 2
of the variables arbitrarily and then solve for the other 3. Let’s take α and
β fixed and solve for γ, δ, and η, to obtain

γ = α + β, δ = −α− 2β, η = α.

You should convince yourself that we can obtain exactly two independent
dimensionless variables, say Π1 and Π2 by taking α = 1,β = 0 and α = 0,β =
1, respectively. Furthermore, any other combination, e.g., α = 3 and β = 2,
could be obtained by combining these solutions.

Before proceeding, it’s worth noting that we can give a more careful defi-
nition of what we mean by “independent” dimensionless variables. The linear
system (3) can be cast in matrix form as Mx = 0, where x = [α, β, γ, δ, η]T

(the T means transpose) and M is the matrix

M =




1 −3 −1 1 1
−2 0 −1 0 −1
1 1 1 0 0




When we solve Mx = 0, we’re looking for vectors in the nullspace of M, and
each such vector corresponds to a dimensionless variable we can construct.
By “independent dimensionless variables” we mean that the corresponding
nullspace vectors should be independent. So the process really comes down
to finding a basis for the nullspace of M!

Now back to the example. For α = 1, β = 0 we obtain γ = 1, δ = −1,
and η = 1, so

Π1 =
vRρ

µ

while α = 0 and β = 1 gives γ = 1, δ = −2, η = 0, and

Π2 =
Fρ

µ2
.
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The Pi Theorem says that the physical law relating these variables can be
written in the form

h(Π1, Π2) = 0

for some function h. This kind of formula defines Π1 implicitly as a function
of Π2 (or vice-versa), i.e.,

Π1 = g(Π2)

for some function g. If we return to our original variables this means that

vRρ

µ
= g

(
Fρ

µ2

)

or

v =
µ

Rρ
g

(
Fρ

µ2

)
(4)

for some (unfortunately unknown) function g. The dimensionless variable Π1

is of great importance in fluid mechanics, and is called the Reynold’s number.
Actually, we can deduce even more from equation (4). Intuition says

that if F = 0 then v = 0, so we conclude that g(0) = 0. The tangent line
approximation says that then g(x) ≈ kx if x is close to zero, where k is some
constant (g′(0), actually). In other words, if F is small (or, more precisely,
if the quantity Fρ

µ2 is small, say because µ is large) then g(x) ≈ kx produces

v ≈ kF

Rµ
.

This is actually quite amazing—we’ve found a formula for the terminal ve-
locity of a ball moving through a viscous fluid and we really don’t know
anything about fluid mechanics!

Here’s one other fine point that’s worth mentioning. In any physical for-
mula involving transcendental functions, the argument to the transcendental
function is always dimensionless. For example, we often encounter expres-
sions like sin(ωt) in physics. Note that t has units of time and ω has units
of reciprocal time (ω is a frequency). Similarly, in expressions like e−kt, if t
is time then k has units of reciprocal time. One way to see that the variable
x in functions like sin(x) or ex must be dimensionless is to note that such
functions are defined by power series, e.g., ex = 1 + x + 1

2
x2 + · · ·. If x was

not dimensionless the various powers would be dimensionally incompatible
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and couldn’t be added.

Problems:

1. What does dimensional analysis have to say about the area of a circle
as a function of its radius?

2. If a quantity x has dimensions MαT βLγ, what are the dimensions of
dx/dt? What are the dimensions of

∫
x dt? What are the dimensions

of
∫

x dV , where dV means we integrate over some region in three
dimensional space?

3. Let V denote the volume between two concentric spheres of radii r1 and
r2. Use the Buckingham Pi Theorem to find a formula for V in terms
of r1 and r2. Then work out the answer from geometry. Reconcile the
answers.

4. Find a formula for the radius of a black hole in term of the black hole’s
mass m, the gravitational constant G, and the speed of light c.

5. How is the period of a pendulum related to its length, the mass of the
bob, gravitational acceleration AND (this is unusual) the initial angle
from which it is released (the angle is in radians, dimensionless)?

6. How is the top speed of a car related to the engine’s power, the density
of the surrounding air, and the “area” of the front of the car?

7. Find a formula for the speed of sound in a gas as a function of its
pressure and density.

8. Compute the frequency of a string’s vibration in term of its linear
density, the tension in the string, and the length of the string.

9. How is the thrust of a rocket motor related to the velocity of the exhaust
gases and amount of mass expelled by the engine per unit time?

10. Recall that the electric potential difference between two points is the
energy required to move a unit charge from one point to the other.
If we use Q to denote the physical quantity charge, it follows that an
electric potential V has dimensions [V ] = ML2T−2Q−1. An electric
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current I has dimensions QT−1 (charge per unit time). Recall that
inductance L in a circuit is defined by the equation V = LdI/dt, while
capacitance C is defined by Q = CV . Find a plausible formula for the
frequency of oscillation of an LC circuit.

11. Coulomb’s Law says that F = kq1q2/r
2, where F is the force between

two charges q1 and q2, r is the distance between the charges, and k is
some constant. What are the dimensions of k? Use this information
to say something about the capacitance (remember Q = CV ) between
two flat plates with areas A, separated by a distance d.

12. Two objects, masses m1 and m2 orbit each other at some distance d.
Find a formula for the orbital period.

13. An object of mass m1 is dropped from some great height h above a
planet of mass m2, radius R. Find a formula for the time t it takes the
object to fall to the planet surface. Also, find a formula for the speed
v of the object at the moment of impact.

14. In deep water it is an observed fact that the speed v at which waves
propagate depend on their wavelength λ and the height h of the wave.
It seems reasonable that the density ρ of water (or whatever the liquid
is) and gravitational acceleration g should factor in. Find a physical law
relating these variables, and solve for v in terms of the other variables.
Under the assumption that h is small relative to λ, approximate v in
terms of the other variables.

15. In the Theory of General Relativity, any mass (like the sun) bends light
rays which pass by the mass. Find a formula for the angular deflection
(this is dimensionless) of a light ray which passes at a distance r from
the center of a mass m. The gravitational constant G and speed of
light c are also relevant.

16. A pipe of length P and cross sectional area A is filled with a liquid
with density ρ, viscosity µ. A force F is applied to the fluid at one end
of the pipe; the fluid flows out the other end at a rate of q (mass per
time). Find a formula for q in terms of the other variables. What if we
consider A and P fixed and let F be very close to zero—what does the
formula for q look like then?
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17. How does the average speed of the molecules in a gas depend on the
temperature of the gas? You might need to specify the molecular mass
of the gas, and use the universal gas constant.

Proof of the Buckingham Pi Theorem

I won’t give a general rigorous proof, but rather consider a specific (but
representative) case. Consider again the terminal velocity of a ball falling
through a liquid. We have physical variables v, F, ρ, R, and µ, with [v] =
LT−1, [F ] = MLT−2, [ρ] = ML−3, [µ] = ML−1T−1, and [R] = L. We
believe that a unit free physical law of the form

f(v, F, ρ, R, µ) = 0 (5)

holds. We will show that in fact any such law can also be expressed as

h(Π1, Π2) = 0 (6)

where Π1 = vRρ
µ

and Π2 = Fρ
µ2 are the dimensionless variables we constructed.

The first thing to note is that the original set of variables S1 = (v, F, ρ, R, µ)
is equivalent to the set S2 = (Π1, Π2, ρ, R, µ) (I just replaced v and F with
Π1 and Π2, but I could have replaced any other two). When I say S1 and S2

are “equivalent” I mean that any variable in one set can be constructed from
the variables in the other set. Obviously anything in S2 can be built from
S1. To see that the converse is true, just note that v = µΠ1

Rρ
and F = µ2Π2

ρ
.

The function f in equation (5) is a function f(x1, x2, x3, x4, x5) of five
variables. Define a function h(x1, x2, x3, x4, x5) as

h(x1, x2, x3, x4, x5) = f(
x1x5

x3x4

,
x2x

2
5

x3

, x3, x4, x5).

Then it’s easy to check that f(v, F, ρ, R, µ) = h(Π1, Π2, ρ, R, µ), so that equa-
tion (5) and the equation h(Π1, Π2, ρ, R, µ) = 0 are equivalent. We will now
use the fact that the law h(Π1, Π2, ρ, R, µ) = 0 must be unit free to show
that h doesn’t actually depend on its last three arguments.

Imagine re-scaling our time variable by some amount r (i.e., we were
measuring time in certain units, now we’ll use r times those units). This
would not change the numerical values of the dimensionless variables Π1
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and Π2, but it will change the value of any physical variable that depends
on time. In particular, it changes the value of µ (but not ρ or R). We
would generally expect that changing the value of µ would change the value
of h(Π1, Π2, ρ, R, µ), but since the physical law is unit free, we always have
h = 0. We conclude that h doesn’t depend on the fifth argument. More
precisely, if we rescale time by a factor of r then µ changes to rµ, and the
value of h changes to h(Π1, Π2, ρ, R, rµ). But since h is constant (the law is
unit free)

∂

∂r
h(Π1, Π2, ρ, R, rµ) = r

∂h

∂x5

(Π1, Π2, ρ, R, rµ) = 0

for any r and µ. We conclude that ∂h
∂x5

= 0, i.e., h doesn’t depend on x5.
Now imagine re-scaling length by some factor r and simultaneously re-

scaling mass by r1/3; this changes the numerical value of R, but not ρ (I
delicately balanced the changes)! Again, since the law is unit free the value
of h remains zero, and so by an argument similar to that above, h must not de-
pend on the fourth argument. Finally, we’re down to a law h(Π1, Π2, ρ) = 0.
If we re-scale mass or length the value of ρ changes (but not the dimensionless
variables); since h cannot change value, we conclude that h doesn’t depend
on the third argument. Thus the law is really given by equation (6).

Implications for Experimental Design

Intelligent use of dimensional analysis can greatly cut down on the amount
of work needed to determine the relationship among the relevant physical
variables in a given situation.

For example, suppose we want to determine the precise relationship be-
tween v, ρ, µ, F, and r in the “balling falling through a viscous liquid” setting
(without the approximation that v is small or the liquid very viscous). We
could conduct the experiment for a wide variety of different choices for each
of the variables and then try fitting a function to all of it, but that would
be a massive undertaking. Even if we experiment with just two different
levels of each of ρ, µ, F, r, that’s still 24 = 16 experiments. And it’s not clear
that we can easily “custom order” fluids with any given density and viscosity
anyway. But there is probably no need to take so much data—we know from
the dimensional analysis that the relationship is given by equation (4). If we
can figure out the function g, we know the entire relationship.
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And we have a simple way to figure out the function g. All we need to do
is collect data for a variety of different experimental configurations in which
we vary the argument Fρ/µ2 of g. This can be accomplished by varying just
the force F (say, by using balls of different density or size). In essence, we
conduct an experiment in which we measure all five variables, methodically
altering the value of Fρ/µ2, and so “sample” the function g at points of our
choosing. This gives a rough picture of the function g over some range of its
input variable, and so gives us the physical law over that range. It takes a
lot less data.
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