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1 Introduction

Our goal here is to prove that ϕk(x) =
√
2 sin(kπx) for k = 1, 2, 3, . . . form a

complete orthogonal family of functions on the interval (0, 1); we already
know they’re orthonormal—it’s completeness that’s hard. With obvious
modifications everything we will prove is also true on any interval (a, b) with
a and b finite. In the course of proving that this family is complete we’ll ex-
amine an important area of PDE known as eigenvalue problems, and develop
some simple ideas from a branch of mathematics known as the calculus of
variations. This also forms the mathematical basis of finite element methods.

The crucial observation in proving that the ϕk are complete is to note
that these functions are non-zero solutions to the differential equation

ϕ′′(x) + λϕ(x) = 0 (1)

with ϕ(0) = ϕ(1) = 0 and λ = k2π2. In fact, if you look back at the solution
procedure for the wave equation on the interval (0, 1) you’ll see that equation
(1) came straight out of the separation of variables process. The fact that
λ = k2π2 was forced by the boundary conditions on ϕ, at least if you want ϕ
to be non-zero.

Some terminology: If a number λ is such that equation (1) has a non-
zero solution with zero boundary conditions, then λ is called an eigenvalue for
d2

dx2 . We already know that the eigenvalues are λk = k2π2 for k = 1, 2, 3, . . ..
The corresponding function ϕk that solves (1) for λ = λk is called the
eigenfunction for λk. We already know that the eigenfunctions here are
ϕk(x) = sin(kπx), or really any multiple of sin(kπx).

The first step in proving completeness is to recast equation (1) in a differ-
ent form, one that looks totally unrelated to a differential equation. Consider
the problem of finding the smallest eigenvalue, λ1 = π2, and its eigenfunction
sin(πx). I claim that this is equivalent to minimizing the quantity

Q(ϕ) =

∫ 1
0 (ϕ

′(x))2 dx∫ 1
0 ϕ

2(x) dx
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over all C1(0, 1) functions with ϕ(0) = ϕ(1) = 0. This is like a Calc 3
optimization problem, except that

• The object Q being minimized is not a function, but an integral or
ratio of integrals, and

• The input to Q is not a number or set of numbers, but a function.

Before we can show that minimizing Q is equivalent to finding eigenvalues,
we need to know more about the calculus of variations.

1.1 The Calculus of Variations

The calculus of variations is about finding functions that minimize integrals.
This might sound like a useless problem, but it’s actually one of the most
important areas of classical and modern applied math. The solutions to
most PDE’s can be found by a minimization process, and this leads to finite
element methods. This is also the basis of much of optimal control theory, and
the calculus of variations is part of the mathematics behind the Lagrangian
and Hamiltonian formulations of the laws of physics.

Let’s consider a simple model problem. We want to find a function which
minimizes the integral

Q(ϕ) =
∫ 1

0
(ϕ′(x))2 dx (2)

with the additional restriction that ϕ(0) = 2 and ϕ(1) = 4. We should clearly
consider only differentiable (say C1([0, 1])) functions. How do we go about
doing this?

Pretend that you’re a junior in high school again; you’ve studied precal-
culus mathematics, so you know what functions are, but you’ve never seen a
derivative. Someone asks you to find a positive number x0 which minimizes
the function f(x) = 1

3
x3+ 1

2
x2− 2x+3, at least locally. You know what that

means: the minimizer x0 will be a number which is lower than any nearby
number. In other words

f(x0) ≤ f(x0 + ϵ)

for all sufficiently small ϵ. If you expand the above inequality out and do
some simple algebra you obtain

(x20 + x0 − 2)ϵ+ (x0 +
1

2
)ϵ2 +

1

3
ϵ3 ≥ 0 (3)
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where the powers of ϵ have been grouped together. Think of x0 as fixed and
consider the left side of inequality (3) as a function of ϵ. How can the left
side be positive for ALL ϵ? If |ϵ| is sufficiently close to zero then the ϵ2 and
higher powers are negligible compared to ϵ; the sign of the left side will be
determined by ϵ in this case. If x20 + x0 − 2 > 0 then choosing ϵ < 0 and
small will violate the inequality (3). If x20 + x0 − 2 < 0 then choosing ϵ > 0
and small will again violate the inequality (3). The only way that (3) can
hold for all ϵ is if x20 + x0 − 2 = 0, so that the ϵ2 term dominates. But if
x20 + x0 − 2 = 0 then we can solve for the positive root and find x0 = 1. This
is where the minimum must be.

The same procedure allows us to find the minimizer of Q(ϕ). Let’s use
f to denote that function which minimizes Q. Just as we perturbed x0
above, by adding in a small number ϵ, we will perturb the minimizer f by
adding in a small function. Let η(x) be any nice differentiable function with
η(0) = η(1) = 0. Then if f really is the minimizer of Q (with the right
boundary conditions) then

Q(f + ϵη) ≥ Q(f) (4)

for ANY small number ϵ, and ANY function η with η(0) = η(1) = 0. Why
must we require that η(0) = η(1) = 0? Because otherwise the function
f(x) + ϵη(x) doesn’t satisfy the boundary conditions and so wouldn’t be a
legitimate contender for the minimizer. Expand out both sides of (4) and do
a bit of algebra to find that

2ϵ
∫ 1

0
f ′(x)η′(x) dx+ ϵ2

∫ 1

0
(η′(x))2 dx ≥ 0. (5)

How is it possible for the left side to be non-negative for ALL choices of
ϵ? Only if the coefficient of ϵ is zero, for otherwise we could violate the
inequality. We conclude that∫ 1

0
f ′(x)η′(x) dx = 0. (6)

Integrate equation (6) by parts with u = f and dv = η′dx. With the
boundary conditions on η we obtain∫ 1

0
f ′′(x)η(x) dx = 0. (7)
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Note that we just implicitly imposed the requirement that the minimizer
f has a second derivative which is differentiable, e.g., f ∈ C2([0, 1]). The
function η was ANY differentiable function with η(0) = η(1) = 0. How can
equation (7) be true for any such η? You should be able to convince yourself
that this can hold ONLY IF f ′′(x) = 0 on the interval (0, 1). But this means
that f(x) is of the form f(x) = c1x + c2, and if it’s to satisfy f(0) = 2 and
f(1) = 4 then f must be f(x) = 2x+ 2.

WARNINGS: What we’ve really done above is to show that IF a mini-
mizer f for Q as defined by equation (2) exists, and IF this minimizer has
an integrable second derivative, THEN f(x) = 2x+ 2. It’s conceivable that:

1. Another function which is, say, just C1 might make Q smaller. Think
of an analogous situation from calculus: If we minimize a function f
over an interval [a, b], that doesn’t mean there might not be a number
outside [a, b] which makes f smaller.

2. No function minimizes Q. An analogous situation in calculus would be
minimizing f(x) = x over the OPEN interval 0 < x < 1.

In what follows we’re generally going to assume that the minimizer f exists—
this will usually be highly plausible, if not proven—and we’ll then find the
minimizer f subject to certain conditions. Typically we’ll require f to be at
least twice-differentiable.

Sometimes, though, you really can see that the function f found by the
above procedure is the best possible. In the last example, with f(x) = 2x+2,
we see that

Q(f + ϵη)−Q(f) = ϵ2
∫ 1

0
(η′(x))2 dx ≥ 0

for all η ∈ C1([0, 1]) with η(0) = η(1) = 0, so f is guaranteed to beat any
C1([0, 1]) function.

Let’s look at a few more examples:

Example 2: Consider minimizing

Q(ϕ) =
∫ 1

0
((ϕ′(x))2 + ϕ2(x)) dx

with the conditions that ϕ(0) = 1, but with no other restrictions on ϕ. The
minimizer f will satisfy

Q(f) ≤ Q(f + ϵη)
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for all C1 functions η with η(0) = 0 and real numbers ϵ. Note here that be-
cause we have no restrictions at the endpoint x = 1, there are no restrictions
on η(1). If you expand out the above equation you find that

ϵ
(
2
∫ 1

0
(f(x)η(x) + f ′(x)η′(x)) dx

)
+O(ϵ2) ≥ 0.

Reasoning as before, this can hold only if∫ 1

0
(f(x)η(x) + f ′(x)η′(x)) dx = 0.

Integrate the second term by parts and use the fact that η(0) = 0 to find
that ∫ 1

0
(f(x)− f ′′(x))η(x) dx+ f ′(1)η(1) = 0

for all functions η with η(0) = 0. Now reason as before: if f(x)− f ′′(x) ̸= 0
for some x in (0, 1) then we can certainly find a function η (and can arrange
η(1) = 0, too) so that the integral above is not zero. We conclude that f−f ′′

is identically zero on the interval (0, 1). If this is true then the above equation
becomes f ′(1)η(1) = 0, and since we can arrange for η(1) to be anything we
like, we must conclude that f ′(1) = 0. So in the end the minimizer f must
satisfy

f(x)− f ′′(x) = 0

with f(0) = 1 and f ′(1) = 0. The general solution to f − f ′′ = 0 is f(x) =
c1e

x + c2e
−x. To arrange the boundary conditions we solve two equations

in two unknowns, c1 + c2 = 1, c1e − c2/e = 0 to find c1 = 1/(e2 + 1),
c2 = e2/(e2 + 1). The minimizer is

f(x) =
1

e2 + 1

(
ex + e2−x

)
.

Example 3: Let’s prove that the shortest path between two points is a
straight line! Let the points be (x0, y0) and (x1, y1). Let’s also make the
assumption that the path can be described as the graph of a function y =
f(x). Then what we seek to minimize is

Q(ϕ) =
∫ x1

x0

√
1 + (ϕ′(x))2 dx
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subject to the restrictions that ϕ(x0) = y0 and ϕ(x1) = y1. As before, we
know that the shortest path f will satisfy Q(f) ≤ Q(f + ϵη) where η(x0) = 0
and η(x1) = 0, and ϵ is any number. Written out in detail this is just

0 ≤
∫ x1

x0

(
√
1 + (f ′(x))2 + 2ϵf ′(x)η′(x) + ϵ2(η′(x))2 −

√
1 + (f ′(x))2) dx. (8)

Looks like a mess. We can simplify by using the fact that if ϵ is a small
number then √

a+ ϵb =
√
a+

b

2
√
a
ϵ+O(ϵ2).

This comes from the tangent line or Taylor series approximation. Apply this
to the integrand in inequality (8) with a = 1+(f ′(x))2 and b = 2f ′η′+ϵ(η′)2.
You find that the first messy square root is

√
1 + (f ′(x))2 + 2ϵf ′(x)η′(x) + ϵ2(η′(x))2 =

√
1 + (f ′(x))2+ϵ

f ′η′√
1 + (f ′)2

+O(ϵ2).

Put this into the integral in (8), do the obvious cancellations, and note that
as before we need the ϵ term to be zero if the inequality is to hold up. This
gives ∫ x1

x0

f ′(x)η′(x)√
1 + (f ′(x))2

dx = 0

for all functions η with η(x0) = η(x1) = 0. Integrate by parts in x to get
the derivative terms off of η. It’s messy, but in the end you get (using the
endpoint conditions on η)

∫ x1

x0

η(x)
f ′′(x)

(1 + (f ′(x))2)3/2
dx = 0.

As before, for this to be true we need f ′′(x)
(1+(f ′(x))2)3/2

= 0. The denominator is

always positive, so for this to be true we need f ′′(x) = 0, i.e., f(x) = mx+ b,
a line. Of course, m and b are adjusted to make it go through the two points
(x0, y0) and (x1, y1).

Example 4: Minimize

Q(ϕ) =
∫ 1

0
(ϕ′(x))2 dx
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subject to ϕ(0) = 1, ϕ(1) = 0, and the condition that∫ 1

0
ϕ(x) sin(πx) dx = 0

so ϕ is orthogonal to sin(πx). To solve this let’s first recall the notation
(f, g) =

∫
fg. Also, let’s use ϕ1(x) to denote the function

√
2 sin(πx).

Let the minimizer be called f ; note that (f, ϕ1) = 0. Normally we’d
replace ϕ in Q(ϕ) by f + ϵη, where η is some function with η(0) = η(1) = 0,
so f+ϵϕ satisfies the boundary conditions. But if we do this here the function
f + ϵϕ won’t generally satisfy (f + ϵη, ϕ1) = 0. However, consider taking η
according to

η = ψ − cϕ1,

where ψ is an arbitrary function with ψ(0) = ψ(1) = 0 and c = (ψ, ϕ1). It’s
easy to check that η(0) = η(1) = 0, and that (η, ϕ1) = 0, for ANY choice of
ψ. This η is a legitimate choice to put into Q(f) ≤ Q(f + ϵη). The usual
argument—expand powers, cancel like terms, set the first variation equal to
zero—leads to (with η = ψ − cϕ1)∫ 1

0
f ′(x)(ψ′(x)− cϕ′

1(x)) dx = 0.

Integrate the first term, f ′ψ′, by parts to get all derivatives onto f ; in-
tegrate the second term by parts to get all derivatives onto ϕ1. With the
boundary conditions ψ(0) = ψ(1) = ϕ1(0) = ϕ1(1) = 0 you obtain

−
∫ 1

0
f ′′(x)ψ(x) dx− c

(
f(x)ϕ′

1(x)|x=1
x=0 −

∫ 1

0
f(x)ϕ′′

1(x) dx
)
= 0.

Now use the fact that ϕ′′
1 = −π2ϕ1 (how convenient!) in the last integral,

with the facts that (f, ϕ1) = 0, ϕ′(0) = π
√
2, ϕ′(1) = −π

√
2, to obtain

−
∫ 1

0
f ′′(x)ψ(x) dx+ cπ

√
2f(1) + cπ

√
2f(0) = 0 (9)

for ANY function ψ, where c = (ψ, ϕ1). What can we deduce from this?
With the conditions f(0) = 1, f(1) = 0, this shows immediately that

−
∫ 1

0
f ′′(x)ψ(x) dx+ cπ

√
2 = 0.
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Use c = (ψ, ϕ1) in the above equation to find that∫ 1

0
ψ(x)(π

√
2ϕ1(x)− f ′′(x)) dx = 0

for all ψ. This forces f ′′(x) = π
√
2ϕ1(x) = 2π sin(πx). Integrate twice in x

to find that f(x) = − 2
π
sin(πx) + c1x+ c2. To obtain f(0) = 1 and f(1) = 0

we need c1 = −1 and c2 = 1. The minimizer is

f(x) = − 2

π
sin(πx)− x+ 1.

General Principles: The previous examples lead us to some general prin-
ciples for solving calculus of variations problems. I don’t want to give a very
specific recipe, just some general guidelines. To minimize Q(ϕ).

1. Start with the inequality

Q(f) ≤ Q(f + ϵη)

where f is the minimizer to be found and η is a legitimate test function
to put into Q.

2. One way or another, manipulate the inequality above into something
of the form

0 ≤ ϵV1 +O(ϵ2)

where V1 is typically an integral involving f and η. The quantity V1 is
called the first variation. For the above inequality to hold for all ϵ we
need V1 = 0.

3. Manipulate V1, often using integration by parts, to determine f . This
usually leads to an equation like∫

L(f)η dx = 0

where L(f) is some kind of differential operator applied to f . The only
way this integral can be zero is for L(f) = 0. Find f by solving the
DE. The initial or boundary conditions will generally be obvious.
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1.2 Eigenfunctions via Calculus of Variations

We’re almost in a position to prove that the functions ϕk(x) = sin(kπx),
k = 1, 2, . . ., are complete on the interval (0, 1). In what follows I won’t put
a
√
2 in front of the sine, as it won’t matter. As mentioned above, the first

crucial fact is that these functions are in fact eigenfunctions for d2/dx2 with
zero boundary conditions, that is,

d2ϕk

dx2
+ λkϕk = 0

with ϕk(0) = ϕk(1) = 0 and λk = k2π2. These functions and the associated

λk are the only non-zero solutions to d2ϕ
dx2 + λϕ = 0 with zero boundary con-

ditions. In order to prove completeness we now cast the problem of finding
the eigenfunctions into a calculus of variations problem.

Claim 1: The function sin(πx) (or any multiple of this function) is the
minimizer of

Q(ϕ) =

∫ 1
0 (ϕ

′(x))2 dx∫ 1
0 ϕ

2(x) dx
=

(ϕ′, ϕ′)

(ϕ, ϕ)
(10)

and the minimum value is π2.

Proof: Let a minimizer of Q be called ϕ1(x); we need to show that ϕ1(x) is
a multiple of sin(πx). Let λ1 = Q(ϕ1). Obviously λ1 ≥ 0. We know that for
any C1([0, 1]) function η(x) with η(0) = η(1) = 0 we have

λ1 ≤ Q(ϕ1 + ϵη)

or, if you write out the definition of Q,

λ1(ϕ1 + ϵη, ϕ1 + ϵη) ≤ (ϕ′
1 + ϵη′, ϕ′

1 + ϵη′).

Expand out the terms to obtain

λ1(ϕ1, ϕ1) + 2ϵλ1(ϕ1, η) + ϵ2λ1(η, η) ≤ (ϕ′
1, ϕ

′
1) + 2ϵ(ϕ′

1, η
′) + ϵ2(η′, η′).

But since Q(ϕ1) = λ1 we have λ1(ϕ1, ϕ1) = (ϕ′
1, ϕ

′
1). Cancelling these terms

from both sides above and setting the first variation to zero shows that

λ1(ϕ1, η)− (ϕ′
1, η

′) = 0.
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Now explicitly write out the integrals,∫ 1

0
(λ1η(x)ϕ1(x)− η′(x)ϕ′

1(x)) dx = 0.

Do an integration by parts on the second term, to get the derivative off of η.
With the boundary conditions on η we obtain∫ 1

0
η(x)(λ1ϕ1(x) + ϕ′′

1(x)) dx = 0,

By the usual argument we have

λ1ϕ1(x) + ϕ′′
1(x) = 0.

Also remember we require ϕ1(0) = ϕ1(1) = 0. But we’ve already seen this!
The only solutions are multiples of ϕ1(x) = sin(kπx) with λ1 = k2π2 for inte-
gers k. But we want the solution that makes Q a minimum. You can easily
check that Q(sin(kπx)) = k2π2, so the minimum will occur with k = 1. Thus
the minimizer of Q is any multiple of ϕ1(x) = sin(πx) with corresponding
λ1 = π2.

Claim 2: The function sin(2πx) is the minimizer of Q(ϕ) with the restric-
tions ϕ(0) = ϕ(1) = 0 and the additional restriction that (ϕ, ϕ1) = 0, where
ϕ1(x) = sin(πx).

Proof: Let ϕ2 denote the minimizer and let λ2 = Q(ϕ2). Then we know
that

λ2 ≤ Q(ϕ2 + ϵη)

where η(0) = η(1) = 0. But we also need (η, ϕ1) = 0. To achieve this let’s
take η to be of the form η = ψ− cϕ1 where c = (ψ, ϕ1)/(ϕ1, ϕ1) and ψ is any
functions with ψ(0) = ψ(1) = 0. You can check that any such η is indeed
orthogonal to ϕ1. Then expanding the above inequality yields

λ2(ϕ2, ϕ2) + 2ϵλ2(ϕ2, η) +O(ϵ2) ≤ (ϕ′
2, ϕ

′
2) + 2ϵ(ϕ′

2, η
′) +O(ϵ2).

Substitute in η = ψ − cϕ1 and note that λ2(ϕ2, ϕ2) = (ϕ′
2, ϕ

′
2), so we can

cancel these terms on both sides to get

2λ2ϵ(ϕ2, ψ)− 2cλ2ϵ(ϕ2, ϕ1) +O(ϵ2) ≤ 2ϵ(ϕ′
2, ψ

′)− 2cϵ(ϕ′
2, ϕ

′
1) +O(ϵ2).
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We can pick out the first variation, the coefficient of ϵ—it must be zero for
this inequality to hold, and so

λ2(ϕ2, ψ)− c(ϕ2, ϕ1)− (ϕ′
2, ψ

′) + c(ϕ′
2, ϕ

′
1) = 0. (11)

But remember, we require that (ϕ2, ϕ1) = 0, so drop that term. Also, note
that

(ϕ′
2, ϕ

′
1) =

∫ 1

0
ϕ′
2(x)

d

dx
(sin(πx)) dx,

= −
∫ 1

0
ϕ2(x)

d2

dx2
(sin(πx)) dx,

= π2
∫ 1

0
ϕ2(x) sin(πx) dx,

= π2(ϕ2, ϕ1),

= 0.

where we integrated by parts to get the derivatives off of ϕ2 and then used
the fact that d2

dx2 (sin(πx)) = −π2 sin(πx). All in all equation (11) becomes

λ2(ϕ2, ψ)− (ϕ′
2, ψ

′) = 0

where ψ is any function with ψ(0) = ψ(1) = 0. But this is exactly what
we got for ϕ1, and it implies that ϕ′′

2 + λ2ϕ2 = 0 with zero boundary con-
ditions. As before, the only non-zero solutions are ϕ2(x) = sin(kπx) with
minimum value Q(ϕ2) = λ2 = k2π2. But the requirement that (ϕ2, ϕ1) = 0
rules out taking k = 1. The next best we can do is k = 2, which yields
ϕ2(x) = sin(2πx) with λ2 = 4π2.

Claim 3: The general claim is this: The nth eigenfunction sin(nπx) is
obtained by minimizing Q(ϕ) with the requirement that ϕ(0) = ϕ(1) = 0
and (ϕ, sin(kπx)) = 0 for k < n. The minimum value is λn = n2π2.

Proof: I’ll be brief! Let the minimum be called ϕn and let λn = Q(ϕn).
Then

λn ≤ Q(ϕn + ϵη)

for any η with η(0) = η(1) = 0 and (η, ϕk) = 0 for k = 1, 2, . . . , n − 1. We
can take η to be of the form

η = ψ −
n−1∑
k=1

ckϕk
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where ψ is any function with ψ(0) = ψ(1) = 0 and ck = (ψ, ϕk)/(ϕk, ϕk).
Then you can easily check that (η, ϕk) = 0 for k = 1, 2, . . . , n− 1. You have
to use the fact that (ϕj, ϕk) = 0 if j ̸= k (the sine functions are orthogonal).
Expand out Q in λn ≤ Q(ϕn + ϵη), use the fact that λn(ϕn, ϕn) = (ϕ′

n, ϕ
′
n),

and dump the O(ϵ2) terms to obtain

(ϕn, ψ)−
n−1∑
k=1

ck(ϕn, ϕk)− (ϕ′
n, ψ

′) +
n−1∑
k=1

ck(ϕ
′
n, ϕ

′
k) = 0. (12)

But all the terms in the first sum are zero, since we require (ϕn, ϕk) = 0 for
k < n. All the terms in the second sum die out, too, since

(ϕ′
n, ϕ

′
k) =

∫ 1

0
ϕ′
n(x)

d

dx
(sin(kπx)) dx,

= −
∫ 1

0
ϕn(x)

d2

dx2
(sin(kπx)) dx,

= k2π2
∫ 1

0
ϕn(x) sin(kπx) dx,

= k2π2(ϕn, ϕk),

= 0.

So all in all equation (12) is just

(ϕn, ψ)− (ϕ′
n, ψ

′) = 0

the same as the case n = 1 and n = 2. We conclude that ϕn satis-
fies ϕ′′

n + λnϕn = 0 with zero boundary conditions. The only choices are
ϕn(x) = sin(kπx) with Q(ϕn) = n2π2, but the requirement (ϕn, sin(kπx)) = 0
for k < n rules out the first n− 1 choices. The best we can do is k = n (re-
member, we’re trying to make Q as small as possible). The minimizer is thus
ϕn(x) = sin(nπx) with λn = Q(ϕn) = n2π2.

Summary: The eigenfunctions for the differential equation

ϕ′′ + λϕ = 0

with boundary conditions ϕ(0) = ϕ(1) = 0 are ϕn(x) = sin(nπx) with cor-
responding λn = n2π2. The eigenfunction ϕn can also be obtained as the
minimizer of Q(ϕ) with the restriction (ϕn, ϕk) = 0 for k < n.
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1.3 Completeness

We’re ready! Remember (it’s been so long) the idea behind completeness is
the following. We want to take an L2(0, 1) function f(x) and expand it as

f(x) =
∞∑
k=1

ckϕk(x)

where ϕk(x) =
√
2 sin(kπx); note I put the

√
2 back, for orthonormality. As

we’ve seen, we’ll choose the ck as

ck = (f, ϕk). (13)

We want to show that the ϕk form a complete family, that is, for any f ∈
L2(0, 1) we have

lim
n→∞

∫ 1

0

(
f(x)−

n∑
k=1

ckϕk(x)

)2

dx = 0. (14)

Actually, we’re only going to prove that any function f ∈ C1([0, 1]) with
f(0) = f(1) = 0 can be approximated like (14). Although it’s true even if
f doesn’t vanish at the endpoints or isn’t differentiable, it’s easier to prove
if we make this assumption. And it’s not hard to use the C1 result to prove
the more general case.

Completeness Theorem: Any C1([0, 1]) function f with f(0) = f(1) = 0
can be approximated in the form (14).

Proof: The orthonormal part we’ve done. Let f be any C1([0, 1]) function.
This means that f is automatically in L2(0, 1). Define

fn(x) = f(x)−
n−1∑
k=1

ckϕk(x)

with ck chosen according to equation (13). The functions fn(x) are the
“remainders” after we’ve used an n − 1 term sine approximation to f . You
can easily check that (fn, ϕj) = 0 for j < n, for

(fn, ϕk) = (f −
n∑

j=1

cjϕj, ϕk) = (f, ϕk)− ck = 0

13



where we’ve used (ϕj, ϕk) = 0 if j ̸= k and the definition of ck. Remember
that ϕn(x) =

√
2 sin(nπx) minimizes Q(ϕ) subject to the restrictions ϕ(0) =

ϕ(1) = 0 and (ϕ, ϕk) = 0 for k < n. The minimum value is Q(
√
2 sin(nπx)) =

λn = n2π2. The function fn satisfies these restrictions—it’s a legitimate
“candidate” to minimize Q—so that

λn ≤ Q(fn)

or
λn(fn, fn) ≤ (f ′

n, f
′
n). (15)

Claim: For all n, (f ′
n, f

′
n) ≤ (f ′, f ′), so that (f ′

n, f
′
n) is bounded in n.

Proof of Claim: It’s just a simple computation.

(f ′
n, f

′
n) = (f ′ −

∑
ckϕ

′
k, f

′ −
∑

ckϕ
′
k),

= (f ′, f ′)− 2
∑

ck(f
′, ϕ′

k) + (
∑

cjϕ
′
j,
∑

ckϕ
′
k). (16)

You can integrate by parts and use ϕ′′
k = −λkϕk to see that

(f ′, ϕ′
k) = −(f, ϕ′′

k) = λk(f, ϕk) = λkck.

A similar integration by parts shows that

(ϕ′
j, ϕ

′
k) = −(ϕj, ϕ

′′
k) = λk(ϕj, ϕk)

which is 0 if j ̸= k and λk if j = k. With these above two equations we can
simplify equation (16) as

(f ′
n, f

′
n) = (f ′, f ′)−

n−1∑
k=1

λkc
2
k.

This makes it clear that (f ′
n, f

′
n) ≤ (f ′, f ′) for all n, since λk > 0 for all k.

With this claim inequality (15) yields

λn(fn, fn) ≤ (f ′, f ′)

or

(fn, fn) ≤
(f ′, f ′)

λn
. (17)

14



Since (f ′, f ′) is finite and independent of n, and since λn = n2π2, it’s obvious
that the right side of the above inequality approaches zero as n get large, so
that

lim
n→∞

(fn, fn) = 0.

But since fn = f −∑n−1
k=1 ckϕk this is EXACTLY equation (14), the definition

of completeness!

Slightly Challenging Problem: Suppose f ∈ C1([0, 1]) but f(0) and/or
f(1) are not necessarily zero. Show that the Fourier series for f still con-
verges to f in L2.

Slightly More Challenging Problem: Suppose f is only piecewise C1

(that is, the interval [0, 1] can be partitioned into intervals [ai, bi], overlap-
ping only at endpoints, and f is C1 on each interval). Show that the Fourier
series for f still converges to f in L2.

1.4 Remarks

These ideas generalize to other differential equations and other orthogonal
families of functions. A more general version of the differential equation
f ′′ + λf = 0 is the equation

d

dx
(p(x)f ′(x))− q(x)f ′(x) + λr(x)f(x) = 0 (18)

where p, q, and r are specified functions (with a few restrictions). On any
interval (a, b) with boundary conditions f(a) = 0, f(b) = 0, it turns out
that there is a non-zero solution to the DE only for certain values of λ. In
fact, these values form a set of eigenvalues λ1, λ2, λ3, . . . with corresponding
eigenfunctions ϕ1, ϕ2, ϕ3, . . .. Using essentially the same techniques we used
above it can be shown that the ϕk form a complete set. The main technical
difficulties arise from the fact that we can’t generally write down the functions
ϕk explicitly (unlike our case with sines and cosines) and we can’t write down
the λk explicitly either. One crucial property of the λk that we used was that
λk → ∞ as k → ∞. Without an explicit formula for λk this has to be proved
by other means. The study of the eigenfunctions and eigenvalues of equations
like (18) is called Sturm-Liouville theory.
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