# Completing a Metric Space 

MA 466
Kurt Bryan

## Introduction

Recall that a metric space $M$ is said to be complete if every Cauchy sequence in $M$ converges to a limit in $M$. Not all metric spaces are complete, but it is a fact that all metric spaces can be "completed", in a way that preserves the essential structure of the metric space. If the space in question is a normed linear space this process completes the space to a Banach space, and an inner product space is completed to a Hilbert space.

## The Space of Cauchy Sequences

Consider a metric space $M$ with metric $d$, and suppose that $M$ is not complete. Let $S$ denote the set of all Cauchy sequences in $M$. We're going to turn $S$ into a metric space in its own right, one that naturally contains a copy of $M$.

Let $X=\left\{x_{n}\right\}$ and $Y=\left\{y_{n}\right\}$ be elements of $S$ (whether the sequences in question have limits in $M$ is irrelevant). We will say that the sequences $X$ and $Y$ are "equivalent" if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0 \tag{1}
\end{equation*}
$$

For example, if $M$ denotes the rational numbers with the usual metric $d(x, y)=$ $|x-y|$, let

$$
X=\{2 / 1,3 / 2,4 / 3,5 / 4, \ldots\}, \quad Y=\{3 / 1,4 / 2,5 / 3,6 / 4, \ldots\}
$$

Both sequences are Cauchy, and moreover since $x_{n}=1+1 / n$ and $y_{n}=$ $1+2 / n$, the $n$th terms differ in magnitude by $1 / n$ and so $d\left(x_{n}, y_{n}\right) \rightarrow 0$ and the sequences are equivalent. That both sequences have limits in $M$ is irrelevant.

It's easy to check that the notion of equivalence defined by equation (1) is in fact an equivalence relation, that is, any element $X$ of $S$ is equivalent to itself (the reflexive property), $X$ equivalent to $Y$ implies $Y$ is equivalent to $X$ (symmetric) and $X$ equivalent to $Y$ and $Y$ equivalent to $Z$ implies $X$ equivalent to $Z$ (transitivity).

## An "Almost" Metric

Define a function $\Delta$ from $S \times S$ to $\mathbb{R}$ as

$$
\begin{equation*}
\Delta(X, Y)=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \tag{2}
\end{equation*}
$$

The function $\Delta$ is supposed to be a "first-stab" at a metric on $S$, but there are a couple of issues. First, does the limit on the right in equation (2) exist? Second, will $\Delta$ really be a metric?

To answer the first question, note that by the triangle inequality we have

$$
\begin{equation*}
d\left(x_{n}, y_{n}\right) \leq d\left(x_{n}, x_{m}\right)+d\left(x_{m}, y_{m}\right)+d\left(y_{m}, y_{n}\right) \tag{3}
\end{equation*}
$$

From equation (3) we have $d\left(x_{n}, y_{n}\right)-d\left(x_{m}, y_{m}\right) \leq d\left(x_{n}, x_{m}\right)+d\left(y_{m}, y_{n}\right)$, and reversing the roles of $m$ and $n$ (and using symmetry of the metric) we find that

$$
\begin{equation*}
\left|d\left(x_{n}, y_{n}\right)-d\left(x_{m}, y_{m}\right)\right| \leq d\left(x_{n}, x_{m}\right)+d\left(y_{m}, y_{n}\right) \tag{4}
\end{equation*}
$$

Since both sequences are Cauchy, for any $\epsilon>0$ we can choose $N_{X}$ so that $d\left(x_{n}, x_{m}\right)<\epsilon / 2$ for $m, n \geq N_{x}$, and also $N_{Y}$ so that $d\left(y_{n}, y_{m}\right)<\epsilon / 2$ for $m, n \geq N_{y}$. Let $N=\max \left(N_{X}, N_{Y}\right)$. From equation (4) we have then have $\left|d\left(x_{n}, y_{n}\right)-d\left(x_{m}, y_{m}\right)\right|<\epsilon$ for all $m, n \geq N$, i.e., $\left\{d\left(x_{n}, y_{n}\right)\right\}$ is a Cauchy sequence in $\mathbb{R}$, and hence the limit in equation (2) converges, since $\mathbb{R}$ is complete.

Ok, so $\Delta$ is well defined on $S \times S$-but is it a metric? It certainly satisfies $\Delta \geq 0$ and $\Delta(X, Y)=\Delta(Y, X)$. The triangle inequality follows from the triangle inequality for $d$, for
$\Delta(X, Y)=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \leq \lim _{n \rightarrow \infty} d\left(x_{n}, z_{n}\right)+\lim _{n \rightarrow \infty} d\left(z_{n}, y_{n}\right)=\Delta(X, Z)+\Delta(Z, Y)$
where $Z=\left\{z_{n}\right\}$ is any other Cauchy sequence. But unfortunately $\Delta(X, Y)=$ 0 (i.e., $X$ and $Y$ are equivalent) doesn't imply that $X=Y$; the example above shows that.

## Fixing the Metric

What we do to overcome this shortcoming is divide $S$ up into its equivalence classes via the equivalence relation (1). Let $M^{*}$ denote the set of
equivalence classes of $S$; we'll use $X^{*}$ and $Y^{*}$ to denote typical elements of $M^{*}$; note that if $X^{*} \in M^{*}$ then $X^{*}$ is a subset of $S$, consisting elements (Cauchy sequences in $M$ ) which are all equivalent to each other. We will define a metric $d^{*}$ on $M^{*}$, as

$$
\begin{equation*}
d^{*}\left(X^{*}, Y^{*}\right)=\Delta(X, Y) \tag{5}
\end{equation*}
$$

where $X$ is any element in $X^{*}$ and $Y$ any element in $Y^{*}$. The function $d^{*}$ is well-defined, independent of the choice of $X$ and $Y$. To see this, let $X_{2} \in X^{*}$ and $Y_{2} \in Y^{*}$. Then

$$
\Delta(X, Y) \leq \Delta\left(X, X_{2}\right)+\Delta\left(X_{2}, Y_{2}\right)+\Delta\left(Y_{2}, Y\right)=\Delta\left(X_{2}, Y_{2}\right)
$$

since $\Delta\left(X, X_{2}\right)=\Delta\left(Y, Y_{2}\right)=0$, so that $\Delta(X, Y) \leq \Delta\left(X_{2}, Y_{2}\right)$. A similar argument also shows $\Delta\left(X_{2}, Y_{2}\right) \leq \Delta(X, Y)$ so that $\Delta(X, Y)=\Delta\left(X_{2}, Y_{2}\right)$. The right side of equation (5) is thus independent of the choice of $X$ and $Y$, and so $d^{*}$ is well-defined.

We now find that if $d^{*}\left(X^{*}, Y^{*}\right)=0$ then $\Delta(X, Y)=0$ for any $X \in X^{*}$, $Y \in Y^{*}$, so that $X^{*}$ and $Y^{*}$ must be the same equivalence class, i.e., $X^{*}=Y^{*}$. The work we did above with $\Delta$ shows that $d^{*}$ also satisfies the other properties required of a metric. The space $M^{*}$ is indeed a metric space.

In general, to carry out any computation involving $X^{*}$ and $Y^{*}$ in $M^{*}$, we choose representatives $X$ and $Y$ (Cauchy sequences) in the appropriate equivalence classes and do the computation with these representatives. We then justify that the specific choices for $X$ and $Y$ didn't matter.

The space $M^{*}$ very naturally contains a copy of the original metric space $M$. Specifically, for any $x \in M$, the sequence $(x, x, x, \ldots)$ is in $S$, and hence belongs to an equivalence class $X^{*}$ in $M^{*}$. Moreover, if $y \in M$ corresponds to $(y, y, y, \ldots)$ in $S$ and to $Y^{*}$ in $M^{*}$ then we find that $d^{*}\left(X^{*}, Y^{*}\right)=d(x, y)$. The new metric corresponds to the old if we identify each element of $M$ with the equivalence class of its "constant" sequence. Put more mathematically, the mapping

$$
\phi: y \rightarrow(y, y, y, \ldots)^{*}
$$

from $M$ to $M^{*}$ is an isometry (distance preserving map), where the "*" means "equivalence class of".

## Density

The original metric space $M$ (or more appropriately, the image $\phi(M)$ of $M$ under the isometry $\left.\phi: y \rightarrow(y, y, y, \ldots)^{*}\right)$ is dense in $M^{*}$. This is easy to prove: let $Y^{*}$ be an element of $M^{*}$, and $Y \in S$ any element of $Y^{*}$ (i.e., a representative for the equivalence class $Y^{*}$ ). $Y$ is itself a Cauchy sequence in $M$. Suppose

$$
Y=\left\{y_{1}, y_{2}, y_{3}, \ldots\right\}
$$

Let $Y_{k}=\phi\left(y_{k}\right)$. It's not hard to see that $Y_{k}$ converges to $Y$, so that $Y_{k}^{*} \rightarrow Y^{*}$ (and note that $Y_{k}^{*} \in \phi(M)$ ).

## Is $M^{*}$ Complete?

We've constructed a new metric space $M^{*}$ with metric $d^{*}$, and $M$ lives naturally inside $M^{*}$-but is $M^{*}$ complete? Yes! But be warned, the argument, though not technically difficult, is a bit abstract. We have to consider Cauchy sequences of $M^{*}$, that is, Cauchy sequences of equivalence classes of Cauchy sequences in $M$ !

To show $M^{*}$ is complete, suppose we have a Cauchy sequence $X_{k}^{*}$ in $M^{*}$; we need to find an element of $M^{*}$ to which $X_{k}^{*}$ converges. For each $k$ choose a representative $X_{k} \in X_{k}^{*}$, and let

$$
X_{k}=\left\{x_{k 1}, x_{k 2}, x_{k 3}, \ldots, x_{k j}, \ldots\right\}
$$

(note the $x_{k j}$ are elements of the original metric space $M$ ). Note that to say that $X_{k}^{*}$ is Cauchy means that for any $\epsilon>0$ we can find some $R$ such that $\Delta\left(X_{m}, X_{n}\right)<\epsilon$ for $m, n \geq R$, i.e.,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} d\left(x_{m j}, x_{n j}\right)<\epsilon \tag{6}
\end{equation*}
$$

for all $m, n \geq R$.
Now we'll use a kind of diagonalization argument. Since for each fixed $k$ the sequence $\left\{x_{k 1}, x_{k 2}, x_{k 3}, \ldots, x_{k j}, \ldots\right\}$ is Cauchy in $M$ (with respect to the second index $j$ ) we can find some $N_{k}$ such that $d\left(x_{k p}, x_{k q}\right)<1 / k$ for $p, q \geq N_{k}$. Choose any $x_{k j}$ with $j \geq N_{k}$ and call that element $y_{k}$. We then have

$$
\begin{equation*}
d\left(y_{k}, x_{k j}\right)<1 / k \tag{7}
\end{equation*}
$$

for $j \geq N_{k}$. For each $k$ let $Y_{k}$ denote the constant sequence

$$
\begin{equation*}
Y_{k}=\left(y_{k}, y_{k}, y_{k}, \ldots\right) \tag{8}
\end{equation*}
$$

which is clearly Cauchy (and so $Y_{k} \in S$ ). Let $Y_{k}^{*}$ denote the equivalence class to which $Y_{k}$ belongs in $M^{*}$. An immediate consequence of inequality (7) is that $\Delta\left(X_{k}, Y_{k}\right) \leq 1 / k$, and hence

$$
\begin{equation*}
d^{*}\left(X_{k}^{*}, Y_{k}^{*}\right) \leq 1 / k . \tag{9}
\end{equation*}
$$

Given the last inequality, if we can find a limit for $Y_{k}^{*}$ in $M^{*}$ then $X_{k}^{*}$ will converge to the same limit.

A limit for $Y_{k}^{*}$ isn't too hard. Let

$$
\begin{equation*}
Y=\left\{y_{1}, y_{2}, y_{3}, \ldots\right\} \tag{10}
\end{equation*}
$$

The sequence $\left\{y_{1}, y_{2}, y_{3}, \ldots\right\}$ is Cauchy. To see this, note that from the triangle inequality we have

$$
\begin{equation*}
d\left(y_{m}, y_{n}\right) \leq d\left(y_{m}, x_{m j}\right)+d\left(x_{m j}, x_{n j}\right)+d\left(x_{n j}, y_{n}\right) \tag{11}
\end{equation*}
$$

From equation (7) we can choose some $M_{2}$ large enough so that $d\left(y_{m}, x_{m j}\right)<$ $\epsilon / 3$ and $d\left(x_{n j}, y_{n}\right)<\epsilon / 3$ for $m, n \geq M_{2}$ and for all $j$ sufficiently large. From equation (6) we can also, by increasing the value of $M_{2}$ if necessary, guarantee that $d\left(x_{m j}, x_{n j}\right)<\epsilon / 3$ by taking $j$ sufficiently large. As a result we find from inequality (11) that $d\left(y_{m}, y_{n}\right)<\epsilon$ for $m, n \geq M_{2}$ and so $\left\{y_{m}\right\}$ is Cauchy.

Thus $Y$ as defined by equation (10) is a Cauchy sequence in $M$ and so belongs to $S$. It's also obvious that $Y_{k}$ defined by equation (8) converges to $Y$ (since $\Delta\left(Y_{k}, Y\right)=\lim _{j} d\left(y_{k}, y_{j}\right)$; since $\left\{y_{j}\right\}$ is Cauchy, $d\left(y_{k}, y_{j}\right)$ can be made small by taking $j, k$ large), and so $Y_{k}^{*}$ converges to $Y^{*}$ where $Y^{*}$ denotes the equivalence class for $Y$ in $M^{*}$. From equation (9) we conclude that $X_{k}^{*} \rightarrow Y^{*} \in M^{*}$.

The metric space $M^{*}$ is called the completion of $M$.

## Banach and Hilbert Spaces

As we've seen, any inner product space is a normed linear space, and any normed linear space is a metric space. We can thus carry out this completion procedure. For a normed linear space we find that the completion is itself a normed linear space, i.e., and Banach space. Moreover, the mapping $\phi$ becomes an isometric isomorphism from $M$ onto $\phi(M)$-a distance preserving map that also preserves algebraic structure, e.g, $\phi(x+y)=\phi(x)+\phi(y)$. In the case of an inner product space we end up with a Hilbert space, and the
inner product is also preserved in a natural way.

## Exercises:

1. Let $M=\{1,1 / 2,1 / 3,1 / 4, \ldots\} \subset \mathbb{R}$. We can consider $M$ to be a metric space with the usual norm $d(x, y)=|x-y|$. But $S$ is not a complete metric space.
Let's set $a_{n}=1 / n$.
(a) Specify a Cauchy sequence in $M$ which has no limit in $M$.
(b) Show that $d\left(a_{n}, x\right) \geq \frac{1}{n^{2}+n}$ for any $x \in M$ with $x \neq a_{n}$.
(c) Show that the only Cauchy sequences in $M$ are those sequences $x_{n}$ which are of

- Type 1: Eventually constant (so $x_{n}=a_{r}$ for some $r$ and all $n \geq N$ ) or;
- Type 2: Sequences such that for each $R>0$ there exists some $N>0$ such that for each $n \geq N$ we have $x_{n}=a_{r}$ for some $r \geq R$. Here $r$ may depend on $n$.
(d) The completion of $M$ consists of the equivalence classes of Cauchy sequences in $M$. A type 1 equivalence class corresponds to an element in already in $M$. What's the natural interpretation of the type 2 sequence? Hint: it's a real number.

2. Show that any uniformly continuous function $T$ from a metric space $M$ to a complete metric space $M_{2}$ can be extended to a continuous mapping from $M^{*}$ to $M_{2}$. Hint: any point $x^{*} \in M^{*}$ is a limit of a sequence $x_{k}$ in $M$. Use continuity to define the extension.
3. Give an example to show that the word "uniformly" in the last problem cannot be omitted. Hint: $M=(0,1)$.
4. Suppose that we try to complete a metric space $M$ that is already complete. Show that in this case $\phi$ is an invertible map that yields a one-to-one correspondence between $M$ and $M^{*}$.
5. Is the completion of a metric space unique? Yes, up to isomorphism. To see this let $M$ be a metric space and $M^{*}$ and $M^{* *}$ be complete metric spaces with metrics $d^{*}$ and $d^{* *}$ such that there exists isometric maps
$\phi_{1}$ and $\phi_{2}$ such that $\phi_{1}(M)$ is dense in $M^{*}$ and $\phi_{2}(M)$ is dense in $M^{* *}$. Show that there is an isometric one-to-one map $\psi$ from $M^{*}$ onto $M^{* *}$ with $\psi\left(\phi_{1}(x)\right)=\phi_{2}(x)$ for all $x \in M$, and $d^{* *}(\psi(x), \psi(y))=d^{*}(x, y)$ for all $x, y \in M^{*}$. Thus up to the mapping $\psi, M^{*}=M^{* *}$
