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Introduction

Recall that a metric space M is said to be complete if every Cauchy se-
quence in M converges to a limit in M . Not all metric spaces are complete,
but it is a fact that all metric spaces can be “completed”, in a way that
preserves the essential structure of the metric space. If the space in question
is a normed linear space this process completes the space to a Banach space,
and an inner product space is completed to a Hilbert space.

The Space of Cauchy Sequences

Consider a metric space M with metric d, and suppose that M is not
complete. Let S denote the set of all Cauchy sequences in M . We’re going
to turn S into a metric space in its own right, one that naturally contains a
copy of M .

Let X = {xn} and Y = {yn} be elements of S (whether the sequences in
question have limits in M is irrelevant). We will say that the sequences X
and Y are “equivalent” if

lim
n→∞

d(xn, yn) = 0. (1)

For example, ifM denotes the rational numbers with the usual metric d(x, y) =
|x− y|, let

X = {2/1, 3/2, 4/3, 5/4, . . .}, Y = {3/1, 4/2, 5/3, 6/4, . . .}.

Both sequences are Cauchy, and moreover since xn = 1 + 1/n and yn =
1 + 2/n, the nth terms differ in magnitude by 1/n and so d(xn, yn) → 0
and the sequences are equivalent. That both sequences have limits in M is
irrelevant.

It’s easy to check that the notion of equivalence defined by equation (1)
is in fact an equivalence relation, that is, any element X of S is equivalent
to itself (the reflexive property), X equivalent to Y implies Y is equivalent
to X (symmetric) and X equivalent to Y and Y equivalent to Z implies X
equivalent to Z (transitivity).
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An “Almost” Metric

Define a function ∆ from S × S to lR as

∆(X,Y ) = lim
n→∞

d(xn, yn). (2)

The function ∆ is supposed to be a “first-stab” at a metric on S, but there
are a couple of issues. First, does the limit on the right in equation (2) exist?
Second, will ∆ really be a metric?

To answer the first question, note that by the triangle inequality we have

d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn). (3)

From equation (3) we have d(xn, yn)−d(xm, ym) ≤ d(xn, xm)+d(ym, yn), and
reversing the roles of m and n (and using symmetry of the metric) we find
that

|d(xn, yn)− d(xm, ym)| ≤ d(xn, xm) + d(ym, yn). (4)

Since both sequences are Cauchy, for any ϵ > 0 we can choose NX so that
d(xn, xm) < ϵ/2 for m,n ≥ Nx, and also NY so that d(yn, ym) < ϵ/2 for
m,n ≥ Ny. Let N = max(NX , NY ). From equation (4) we have then have
|d(xn, yn) − d(xm, ym)| < ϵ for all m,n ≥ N , i.e., {d(xn, yn)} is a Cauchy
sequence in lR, and hence the limit in equation (2) converges, since lR is
complete.

Ok, so ∆ is well defined on S×S—but is it a metric? It certainly satisfies
∆ ≥ 0 and ∆(X,Y ) = ∆(Y,X). The triangle inequality follows from the
triangle inequality for d, for

∆(X, Y ) = lim
n→∞

d(xn, yn) ≤ lim
n→∞

d(xn, zn)+ lim
n→∞

d(zn, yn) = ∆(X,Z)+∆(Z, Y )

where Z = {zn} is any other Cauchy sequence. But unfortunately ∆(X,Y ) =
0 (i.e., X and Y are equivalent) doesn’t imply thatX = Y ; the example above
shows that.

Fixing the Metric

What we do to overcome this shortcoming is divide S up into its equiv-
alence classes via the equivalence relation (1). Let M∗ denote the set of
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equivalence classes of S; we’ll use X∗ and Y ∗ to denote typical elements of
M∗; note that if X∗ ∈ M∗ then X∗ is a subset of S, consisting elements
(Cauchy sequences in M) which are all equivalent to each other. We will
define a metric d∗ on M∗, as

d∗(X∗, Y ∗) = ∆(X, Y ) (5)

where X is any element in X∗ and Y any element in Y ∗. The function d∗ is
well-defined, independent of the choice of X and Y . To see this, let X2 ∈ X∗

and Y2 ∈ Y ∗. Then

∆(X, Y ) ≤ ∆(X,X2) + ∆(X2, Y2) + ∆(Y2, Y ) = ∆(X2, Y2)

since ∆(X,X2) = ∆(Y, Y2) = 0, so that ∆(X, Y ) ≤ ∆(X2, Y2). A similar
argument also shows ∆(X2, Y2) ≤ ∆(X,Y ) so that ∆(X,Y ) = ∆(X2, Y2).
The right side of equation (5) is thus independent of the choice of X and Y ,
and so d∗ is well-defined.

We now find that if d∗(X∗, Y ∗) = 0 then ∆(X, Y ) = 0 for any X ∈ X∗,
Y ∈ Y ∗, so thatX∗ and Y ∗ must be the same equivalence class, i.e., X∗ = Y ∗.
The work we did above with ∆ shows that d∗ also satisfies the other properties
required of a metric. The space M∗ is indeed a metric space.

In general, to carry out any computation involving X∗ and Y ∗ in M∗,
we choose representatives X and Y (Cauchy sequences) in the appropriate
equivalence classes and do the computation with these representatives. We
then justify that the specific choices for X and Y didn’t matter.

The space M∗ very naturally contains a copy of the original metric space
M . Specifically, for any x ∈M , the sequence (x, x, x, . . .) is in S, and hence
belongs to an equivalence class X∗ in M∗. Moreover, if y ∈ M corresponds
to (y, y, y, . . .) in S and to Y ∗ in M∗ then we find that d∗(X∗, Y ∗) = d(x, y).
The new metric corresponds to the old if we identify each element of M with
the equivalence class of its “constant” sequence. Put more mathematically,
the mapping

ϕ : y → (y, y, y, . . .)∗

from M to M∗ is an isometry (distance preserving map), where the “∗”
means “equivalence class of”.

Density
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The original metric space M (or more appropriately, the image ϕ(M) of
M under the isometry ϕ : y → (y, y, y, . . .)∗) is dense in M∗. This is easy
to prove: let Y ∗ be an element of M∗, and Y ∈ S any element of Y ∗ (i.e., a
representative for the equivalence class Y ∗). Y is itself a Cauchy sequence in
M . Suppose

Y = {y1, y2, y3, . . .}

Let Yk = ϕ(yk). It’s not hard to see that Yk converges to Y , so that Y ∗
k → Y ∗

(and note that Y ∗
k ∈ ϕ(M)).

Is M∗ Complete?

We’ve constructed a new metric space M∗ with metric d∗, and M lives
naturally inside M∗—but is M∗ complete? Yes! But be warned, the argu-
ment, though not technically difficult, is a bit abstract. We have to consider
Cauchy sequences of M∗, that is, Cauchy sequences of equivalence classes of
Cauchy sequences in M !

To show M∗ is complete, suppose we have a Cauchy sequence X∗
k in M∗;

we need to find an element of M∗ to which X∗
k converges. For each k choose

a representative Xk ∈ X∗
k , and let

Xk = {xk1, xk2, xk3, . . . , xkj, . . .}

(note the xkj are elements of the original metric space M). Note that to say
that X∗

k is Cauchy means that for any ϵ > 0 we can find some R such that
∆(Xm, Xn) < ϵ for m,n ≥ R, i.e.,

lim
j→∞

d(xmj, xnj) < ϵ (6)

for all m,n ≥ R.
Now we’ll use a kind of diagonalization argument. Since for each fixed

k the sequence {xk1, xk2, xk3, . . . , xkj, . . .} is Cauchy in M (with respect to
the second index j) we can find some Nk such that d(xkp, xkq) < 1/k for
p, q ≥ Nk. Choose any xkj with j ≥ Nk and call that element yk. We then
have

d(yk, xkj) < 1/k (7)

for j ≥ Nk. For each k let Yk denote the constant sequence

Yk = (yk, yk, yk, . . .) (8)
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which is clearly Cauchy (and so Yk ∈ S). Let Y ∗
k denote the equivalence class

to which Yk belongs in M∗. An immediate consequence of inequality (7) is
that ∆(Xk, Yk) ≤ 1/k, and hence

d∗(X∗
k , Y

∗
k ) ≤ 1/k. (9)

Given the last inequality, if we can find a limit for Y ∗
k in M∗ then X∗

k will
converge to the same limit.

A limit for Y ∗
k isn’t too hard. Let

Y = {y1, y2, y3, . . .} (10)

The sequence {y1, y2, y3, . . .} is Cauchy. To see this, note that from the
triangle inequality we have

d(ym, yn) ≤ d(ym, xmj) + d(xmj, xnj) + d(xnj, yn). (11)

From equation (7) we can choose someM2 large enough so that d(ym, xmj) <
ϵ/3 and d(xnj, yn) < ϵ/3 for m,n ≥M2 and for all j sufficiently large. From
equation (6) we can also, by increasing the value ofM2 if necessary, guarantee
that d(xmj, xnj) < ϵ/3 by taking j sufficiently large. As a result we find from
inequality (11) that d(ym, yn) < ϵ for m,n ≥M2 and so {ym} is Cauchy.

Thus Y as defined by equation (10) is a Cauchy sequence in M and so
belongs to S. It’s also obvious that Yk defined by equation (8) converges
to Y (since ∆(Yk, Y ) = limj d(yk, yj); since {yj} is Cauchy, d(yk, yj) can
be made small by taking j, k large), and so Y ∗

k converges to Y ∗ where Y ∗

denotes the equivalence class for Y in M∗. From equation (9) we conclude
that X∗

k → Y ∗ ∈M∗.
The metric space M∗ is called the completion of M .

Banach and Hilbert Spaces

As we’ve seen, any inner product space is a normed linear space, and any
normed linear space is a metric space. We can thus carry out this completion
procedure. For a normed linear space we find that the completion is itself a
normed linear space, i.e., and Banach space. Moreover, the mapping ϕ be-
comes an isometric isomorphism from M onto ϕ(M)—a distance preserving
map that also preserves algebraic structure, e.g, ϕ(x+ y) = ϕ(x) + ϕ(y). In
the case of an inner product space we end up with a Hilbert space, and the

5



inner product is also preserved in a natural way.

Exercises:

1. LetM = {1, 1/2, 1/3, 1/4, . . .} ⊂ lR. We can considerM to be a metric
space with the usual norm d(x, y) = |x − y|. But S is not a complete
metric space.

Let’s set an = 1/n.

(a) Specify a Cauchy sequence in M which has no limit in M .

(b) Show that d(an, x) ≥ 1
n2+n

for any x ∈M with x ̸= an.

(c) Show that the only Cauchy sequences in M are those sequences
xn which are of

• Type 1: Eventually constant (so xn = ar for some r and all
n ≥ N) or;

• Type 2: Sequences such that for each R > 0 there exists some
N > 0 such that for each n ≥ N we have xn = ar for some
r ≥ R. Here r may depend on n.

(d) The completion ofM consists of the equivalence classes of Cauchy
sequences in M . A type 1 equivalence class corresponds to an
element in already inM . What’s the natural interpretation of the
type 2 sequence? Hint: it’s a real number.

2. Show that any uniformly continuous function T from a metric space
M to a complete metric space M2 can be extended to a continuous
mapping from M∗ to M2. Hint: any point x∗ ∈ M∗ is a limit of a
sequence xk in M . Use continuity to define the extension.

3. Give an example to show that the word “uniformly” in the last problem
cannot be omitted. Hint: M = (0, 1).

4. Suppose that we try to complete a metric space M that is already
complete. Show that in this case ϕ is an invertible map that yields a
one-to-one correspondence between M and M∗.

5. Is the completion of a metric space unique? Yes, up to isomorphism. To
see this let M be a metric space and M∗ and M∗∗ be complete metric
spaces with metrics d∗ and d∗∗ such that there exists isometric maps
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ϕ1 and ϕ2 such that ϕ1(M) is dense in M∗ and ϕ2(M) is dense in M∗∗.
Show that there is an isometric one-to-one map ψ from M∗ onto M∗∗

with ψ(ϕ1(x)) = ϕ2(x) for all x ∈ M , and d∗∗(ψ(x), ψ(y)) = d∗(x, y)
for all x, y ∈M∗. Thus up to the mapping ψ, M∗ =M∗∗

7


