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Introduction

Recall that a metric space M is said to be complete if every Cauchy se-
quence in M converges to a limit in M. Not all metric spaces are complete,
but it is a fact that all metric spaces can be “completed”, in a way that
preserves the essential structure of the metric space. If the space in question
is a normed linear space this process completes the space to a Banach space,
and an inner product space is completed to a Hilbert space.

The Space of Cauchy Sequences

Consider a metric space M with metric d, and suppose that M is not
complete. Let S denote the set of all Cauchy sequences in M. We're going
to turn S into a metric space in its own right, one that naturally contains a
copy of M.

Let X ={z,} and Y = {y,} be elements of S (whether the sequences in
question have limits in M is irrelevant). We will say that the sequences X
and Y are “equivalent” if

lim d(z,,y,) = 0. (1)
n—oo
For example, if M denotes the rational numbers with the usual metric d(z,y) =
|z — yl, let

X ={2/1,3/2,4/3,5/4,...}, Y ={3/1,4/2,5/3,6/4,...}.

Both sequences are Cauchy, and moreover since z, = 1+ 1/n and y, =
1 4 2/n, the nth terms differ in magnitude by 1/n and so d(z,,y,) — 0
and the sequences are equivalent. That both sequences have limits in M is
irrelevant.

It’s easy to check that the notion of equivalence defined by equation (1)
is in fact an equivalence relation, that is, any element X of S is equivalent
to itself (the reflexive property), X equivalent to Y implies Y is equivalent
to X (symmetric) and X equivalent to Y and Y equivalent to Z implies X
equivalent to Z (transitivity).



An “Almost” Metric

Define a function A from S x S to IR as

A(X,Y) = lim d(zp, yn)- (2)
n—oo
The function A is supposed to be a “first-stab” at a metric on S, but there
are a couple of issues. First, does the limit on the right in equation (2) exist?
Second, will A really be a metric?
To answer the first question, note that by the triangle inequality we have

AT, Yn) < d(@ny Tn) + ATy Ym) + A(Yins Yn)- (3)

From equation (3) we have d(z,,, yn) — d(m, Ym) < d(Tpn, Tp) +d (Y, Yn), and
reversing the roles of m and n (and using symmetry of the metric) we find
that

|d(Zn, Yn) — ATy Ym)| < d(Tny Tn) + A(Yrms Yn)- (4)

Since both sequences are Cauchy, for any € > 0 we can choose Ny so that
d(zp, ) < €/2 for m,n > N,, and also Ny so that d(y,,ym) < €/2 for
m,n > N,. Let N = max(Nx, Ny). From equation (4) we have then have
|d(zp, yn) — d(Tm, ym)| < € for all m,n > N, ie., {d(x,,y,)} is a Cauchy
sequence in R, and hence the limit in equation (2) converges, since R is
complete.

Ok, so A is well defined on S x S—but is it a metric? It certainly satisfies
A > 0 and A(X,Y) = A(Y, X). The triangle inequality follows from the
triangle inequality for d, for

A(X,Y) = lim d(z,,y,) < lim d(x,, 2,)+ im d(z,,y,) = A(X, Z2)+A(Z,Y)

n—o0

where Z = {z,} is any other Cauchy sequence. But unfortunately A(X,Y) =
0 (i.e., X and Y are equivalent) doesn’t imply that X = Y’; the example above
shows that.

Fixing the Metric

What we do to overcome this shortcoming is divide S up into its equiv-
alence classes via the equivalence relation (1). Let M* denote the set of
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equivalence classes of S; we’ll use X* and Y* to denote typical elements of
M*; note that if X* € M* then X* is a subset of S, consisting elements
(Cauchy sequences in M) which are all equivalent to each other. We will
define a metric d* on M*, as

4 (X", V") = A(X,Y) (5)

where X is any element in X* and Y any element in Y*. The function d* is
well-defined, independent of the choice of X and Y. To see this, let X, € X*
and Y5 € Y*. Then

A(X,)Y) S A(X, X2) + A(X2,Y2) + A(Y2, V) = A(Xy, Y3)

since A(X, Xy) = A(Y,Y2) = 0, so that A(X,Y) < A(Xy,Ys). A similar
argument also shows A(Xs,Ys) < A(X,Y) so that A(X,Y) = A(X,, Ys).
The right side of equation (5) is thus independent of the choice of X and Y,
and so d* is well-defined.

We now find that if d*(X*,Y™*) = 0 then A(X,Y) = 0 for any X € X*,
Y € Y*, sothat X* and Y* must be the same equivalence class, i.e., X* = Y*.
The work we did above with A shows that d* also satisfies the other properties
required of a metric. The space M* is indeed a metric space.

In general, to carry out any computation involving X* and Y* in M*,
we choose representatives X and Y (Cauchy sequences) in the appropriate
equivalence classes and do the computation with these representatives. We
then justify that the specific choices for X and Y didn’t matter.

The space M* very naturally contains a copy of the original metric space
M. Specifically, for any x € M, the sequence (z,z,x,...) is in S, and hence
belongs to an equivalence class X* in M*. Moreover, if y € M corresponds
to (y,v,y,...)in S and to Y* in M* then we find that d*(X*,Y*) = d(z,y).
The new metric corresponds to the old if we identify each element of M with
the equivalence class of its “constant” sequence. Put more mathematically,
the mapping

¢y = (¥,9,9,...)

from M to M* is an isometry (distance preserving map), where the “x
means “equivalence class of”.

Density



The original metric space M (or more appropriately, the image ¢(M) of
M under the isometry ¢ : y — (y,y,y,...)") is dense in M*. This is easy
to prove: let Y* be an element of M*, and Y € S any element of Y* (i.e., a
representative for the equivalence class Y*). Y is itself a Cauchy sequence in
M. Suppose

Y = {ylay27y3a e }

Let Y = ¢(y). It’s not hard to see that Y}, converges to Y, so that ¥, — Y*
(and note that Y,* € ¢(M)).

Is M* Complete?

We've constructed a new metric space M* with metric d*, and M lives
naturally inside M*—but is M* complete? Yes! But be warned, the argu-
ment, though not technically difficult, is a bit abstract. We have to consider
Cauchy sequences of M*, that is, Cauchy sequences of equivalence classes of
Cauchy sequences in M!

To show M* is complete, suppose we have a Cauchy sequence X in M*;
we need to find an element of M* to which X; converges. For each k choose
a representative X; € X, and let

Xi = {@r1, Tro, Th3, - - -, Thjy - -}

(note the xzy; are elements of the original metric space M). Note that to say
that X} is Cauchy means that for any € > 0 we can find some R such that
A(Xp, X)) < € for m,n > R, ie.,

lim d(xpj, T,5) < € (6)
J—00
for all m,n > R.
Now we’ll use a kind of diagonalization argument. Since for each fixed
k the sequence {wy1, Tpa, Tis, - - ., Tpj, ...} is Cauchy in M (with respect to
the second index j) we can find some N}, such that d(xy,, zx,) < 1/k for
p,q > Nj. Choose any zy; with j > Nj and call that element y,. We then
have

d(yk, iL‘kj) < 1/l€ (7)
for 5 > Nj. For each k let Y) denote the constant sequence
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which is clearly Cauchy (and so Y), € S). Let Y;* denote the equivalence class
to which Yj belongs in M*. An immediate consequence of inequality (7) is
that A(Xy,Y:) < 1/k, and hence

4 (X7, Y) < 1/k. (9)

Given the last inequality, if we can find a limit for ¥;* in M* then X will
converge to the same limit.
A limit for Y}* isn’t too hard. Let

Y = {y17y2)y37"'} (1())

The sequence {y1,¥2,9s,...} is Cauchy. To see this, note that from the
triangle inequality we have

d(ym, yn) < d(ymv xmj) + d(xmja mnj) + d(xnjﬁ yn)' (11)

From equation (7) we can choose some M, large enough so that d(y,,, zm,;) <
¢/3 and d(x,;, yn) < €/3 for m,n > M, and for all j sufficiently large. From
equation (6) we can also, by increasing the value of M, if necessary, guarantee
that d(z,,;, xn;) < €/3 by taking j sufficiently large. As a result we find from
inequality (11) that d(ym,y,) < € for m,n > M, and so {y,} is Cauchy.

Thus Y as defined by equation (10) is a Cauchy sequence in M and so
belongs to S. It’s also obvious that Y} defined by equation (8) converges
to Y (since A(Y,Y) = lim; d(y,y,); since {y;} is Cauchy, d(yx,y;) can
be made small by taking j, k large), and so Y} converges to Y* where Y*
denotes the equivalence class for Y in M*. From equation (9) we conclude
that X} — Y* € M*.

The metric space M* is called the completion of M.

Banach and Hilbert Spaces

As we’ve seen, any inner product space is a normed linear space, and any
normed linear space is a metric space. We can thus carry out this completion
procedure. For a normed linear space we find that the completion is itself a
normed linear space, i.e., and Banach space. Moreover, the mapping ¢ be-
comes an isometric isomorphism from M onto ¢(M)—a distance preserving
map that also preserves algebraic structure, e.g, ¢(z + y) = ¢(x) + ¢(y). In
the case of an inner product space we end up with a Hilbert space, and the



inner product is also preserved in a natural way:.

Exercises:

1. Let M ={1,1/2,1/3,1/4, ...} C IR. We can consider M to be a metric
space with the usual norm d(z,y) = |z — y|. But S is not a complete
metric space.

Let’s set a, = 1/n.

(a) Specify a Cauchy sequence in M which has no limit in M.
(b) Show that d(an,x) > n2—1+n for any x € M with = # a,.

(c) Show that the only Cauchy sequences in M are those sequences
Z,, which are of

e Type 1: Eventually constant (so z,, = a, for some r and all
n > N) or;

e Type 2: Sequences such that for each R > 0 there exists some
N > 0 such that for each n > N we have x,, = a, for some
r > R. Here r may depend on n.

(d) The completion of M consists of the equivalence classes of Cauchy
sequences in M. A type 1 equivalence class corresponds to an
element in already in M. What’s the natural interpretation of the
type 2 sequence? Hint: it’s a real number.

2. Show that any uniformly continuous function 7" from a metric space
M to a complete metric space M, can be extended to a continuous
mapping from M* to M,. Hint: any point x* € M* is a limit of a
sequence xp in M. Use continuity to define the extension.

3. Give an example to show that the word “uniformly” in the last problem
cannot be omitted. Hint: M = (0,1).

4. Suppose that we try to complete a metric space M that is already
complete. Show that in this case ¢ is an invertible map that yields a
one-to-one correspondence between M and M*.

5. Is the completion of a metric space unique? Yes, up to isomorphism. To
see this let M be a metric space and M* and M** be complete metric
spaces with metrics d* and d** such that there exists isometric maps
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¢1 and ¢y such that ¢ (M) is dense in M* and ¢o(M) is dense in M™**.
Show that there is an isometric one-to-one map @ from M* onto M**

with $(61(2)) = a(z) for all & € M, and d*(4(z), ¥(y)) = d*(z,)
for all z,y € M*. Thus up to the mapping ¢, M* = M**



