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Let M1 be a metric space with metric d1 and M2 a metric space with
metric d2. Recall that a function f : M1 → M2 is continuous at x ∈ M1 if for
each ϵ > 0 there is a δ > 0 such that d2(f(x), f(y)) < ϵ for all y such that
d1(x, y) < δ.

Here’s a useful lemma concerning continuity.

Lemma 1 A function f from M1 to M2 is continuous at a point x ∈ M1 if
and only if

lim
n→∞

f(xn) = f(x)

for every sequence xn which converges to x.

Proof: Suppose f is continuous at x and xn is any sequence which converges
to x. Let ϵ > 0 be given and take δ as in the definition of continuity. Since
xn → x we can choose some N such that d1(xn, x) < δ for all n ≥ N , and
this means that d2(f(x), f(xn)) < ϵ for all n ≥ N . Thus f(xn) converges to
f(x).

Conversely, suppose that f(xn) converges to f(x) for all sequences xn

which converge to x, but suppose that f is NOT continuous at x. The
latter means that we can find some ϵ > 0 and some xn ∈ M1 such that
d2(f(x), f(xn)) ≥ ϵ and yet d1(xn, x) < 1/n. But this implies a clear contra-
diction, for then xn → x but f(xn) cannot converge to f(x). �

A function f from E ⊂ M1 to M2 is bounded if the set S = {f(x)|x ∈ E}
is bounded in M2, that is, S ⊂ Br(b) for some b ∈ M2 and some r > 0.
Recall that the choice of b in the definition of bounded doesn’t matter—if S
is bounded using one choice for b, S is bounded for any other.

Another very useful theorem from reals is this.

Theorem 1 Let K be a compact subset of metric space M1 and f : K → M2

a continuous function on K. Then the image f(K) is compact in M2.

Proof: Let yk be a sequence contained in f(K). Each yk = f(xk) for some
xk ∈ K. Now since K is compact we can choose a subsequence xkj which
converges to some point x∗ ∈ K. From the continuity of f we conclude that
the subsequence ykjf = (xkj) converges to y∗ = f(x∗) ∈ f(K), so that any
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sequence in f(K) has a convergent subsequence. Thus f(K) is compact. �

Of course this means that f(K) is closed and bounded. The latter shows
that a continuous function on a compact set is necessarily bounded.

Here’s a nice fact from reals that also extends:

Theorem 2 Let K be a compact subset of metric space M1 and f : K → lR
a continuous function on K. Then f attains it’s maximum value at some
point in K.

Proof: We know from the previous theorem that f is bounded; let M =
supx∈K f(x). We’ll show that f(a) = M for some point a ∈ K.

To see this, choose a sequence xn ∈ K such that M − 1/n < f(xn) ≤ M .
Since K is compact, we can extract a subsequence xnk

which converges to
some point a ∈ K. Since f is continuous we have, by Lemma 1,

f(a) = lim
nk→∞

f(x).

But the right side above clearly converges to M , so f(a) = M . �
Here’s a little something to think about: Why is f in the last theorem

required to have lR as its range, instead some arbitrary metric space?
Let E ⊂ M1. A function f defined on E is continuous on E if f is

continuous at each point in E. A function f is uniformly continuous on E if
f is continuous at each x ∈ E and for any ϵ in the continuity definition the
δ can be chosen independently of x. In short, for any given ϵ we can choose
δ in a “one size fits all x” fashion.

Here’s a theorem from real analysis that generalizes to the present setting.

Theorem 3 Let K be a compact subset of metric space M1 and f : K → M2

a continuous function on K. Then f is uniformly continuous.

Proof: We’ll do a proof by contradiction: Suppose that f is not uniformly
continuous. Then for any ϵ > 0 we can find points xn and yn in K such
that d1(xn, yn) < 1/n but d2(f(xn), f(yn)) ≥ ϵ. Since K is compact we can
extract subsequences xnk

and ynk
which converge to points inK; indeed, both

subsequences must converge to the same point a, since d1(xnk
, ynk

) < 1/nk.
Since f is continuous at each point in K we must have (by Lemma 1)

lim
k→∞

f(xnk
) = f(a) = lim

k→∞
f(ynk

)

which is clearly impossible since d2(f(xnk
), f(ynk

)) ≥ ϵ. We conclude that f
must be uniformly continuous. �
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