Euclidean *n*-space MA 466 Kurt Bryan

Maybe you didn't see it when you took real analysis, but \mathbb{R}^n with the usual inner product is a Hilbert space, that is, an inner product space which is complete. The completeness of \mathbb{R}^n follows pretty simply from the fact that \mathbb{R} is complete, which I'll show below.

Recall that if $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ then the inner product is of course just

$$\langle x, y \rangle = \sum_{k=1}^{n} x_k y_k, \tag{1}$$

the "dot product". The induced norm is

$$||x||_2 = \sqrt{\langle x, x \rangle} = \left(\sum_{k=1}^n x_k^2\right)^{1/2} \tag{2}$$

and of course the corresponding metric is

$$d(x,y) = \|x - y\|_2 = \left(\sum_{k=1}^n (x_k - y_k)^2\right)^{1/2},$$
(3)

the usual distance formula. We've already checked that $\langle x, y \rangle$ as defined is an inner product; we'll show now that with the induced metric \mathbb{R}^n is in fact complete.

In what follows I'll use superscripts to index the elements of a sequence, so x^k refers to the kth element in a sequence of vectors in \mathbb{R}^n . I'll write x_j^k to refer to the *j*th component of the kth element.

Theorem 1: A sequence $\{x^k\}$ in \mathbb{R}^n converges to a vector $x = (x_1, \ldots, x_n)$ if and only if each of the sequences $\{x_j^k\}, 1 \leq j \leq n$, converges to x_j in \mathbb{R} .

Proof: Suppose that the sequence x^k converges to the vector $x = (x_1, \ldots, x_n)$. Then for any $\epsilon > 0$ we can find some N such that $d(x^k, x) < \epsilon$ for all $k \ge N$. It's easy to see from (3) that this forces $|x_j^k - x_j| < \epsilon$ too, so we conclude that x_j^k converges to x_j in \mathbb{R} . Conversely, suppose that each of the sequences $\{x_j^k\}$, $1 \le j \le n$, converge to some number x_j . Then for any $\epsilon > 0$ we can find some N_j such that

$$|x_j^k - x_j| < \epsilon / \sqrt{n}$$

for $k \geq N_j$. Let $N = \max_j N_j$ (the maximum must exist!) For $k \geq N$ we have $|x_j^k - x_j| < \epsilon/\sqrt{n}$ for $1 \leq j \leq n$. It follows easily from equation (3) that $d(x^k, x) < \epsilon$, where $x = (x_1, \ldots, x_n)$, so x^k converges to x in \mathbb{R}^n . \Box

So a sequence converges in \mathbb{R}^n iff it converges component by component. The same fact is true concerning the Cauchy criterium:

Theorem 2: A sequence $\{x^k\}$ in \mathbb{R}^n is Cauchy if and only if each of the sequences $\{x_i^k\}$, $1 \le j \le n$, is Cauchy in \mathbb{R} .

Proof: Suppose that the sequence x^k is Cauchy in \mathbb{R}^n . Then for any $\epsilon > 0$ we can find some N such that $d(x^k, x^m) < \epsilon$ for $k, m \ge N$. It's easy to see from (3) that this forces $|x_j^k - x_j^m| < \epsilon$ too, so we conclude that x_j^k is Cauchy in \mathbb{R} .

Conversely, suppose that each of the sequences $\{x_j^k\}, 1 \leq j \leq n$, is Cauchy in \mathbb{R} . Then for any $\epsilon > 0$ we can find some N_j such that

$$|x_j^k - x_j^m| < \epsilon / \sqrt{n}$$

for $k, m \geq N_j$. Let $N = \max_j N_j$ (the maximum must exist!) For $k, m \geq N$ we have $|x_j^k - x_j^m| < \epsilon/\sqrt{n}$ for $1 \leq j \leq n$. It follows easily from equation (3) that $d(x^k, x^m) < \epsilon$ so that x^k is Cauchy in \mathbb{R}^n .

Theorem 3: The space \mathbb{R}^n with the inner product (1) is complete.

Proof: Let x^k be a Cauchy sequence in \mathbb{R}^n . By Theorem 2 each of the sequences x_j^k , $1 \leq j \leq n$, is Cauchy in \mathbb{R} and hence converges to some number, say x_j . By Theorem 1 the sequence x^k converges to the vector $x = (x_1, \ldots, x_n)$. Since each Cauchy sequence in \mathbb{R}^n converges, \mathbb{R}^n is complete.