Overview of Adipose Tissue Processes

Lipase Action

Fatty Acid Transport Protein (FATP)

Activation

Mitochondrial Import

Fatty Acid β-Oxidation

Paralogous Reactions

Electron Transport

Pathway Elucidation

Variations on the β-oxidation theme

For fatty acids with odd numbered double bonds

For fatty acids with even numbered double bonds

For fatty acids with odd numbered double bonds

Propionyl-CoA

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

α-Oxidation

R
Chlorophyll
$$a$$
R = $-CH_3$
Chlorophyll b
R = $-C-H$

$$\begin{tabular}{cccc} \textbf{CoA-SH} & + & \\ \textbf{ATP} & \textbf{AMP} + \textbf{PP}_i \\ \hline & & \\ Phytanoyl-CoA \\ Synthetase \\ \end{tabular}$$

$$\begin{array}{c|c} Phytanoyl\text{-}CoA & \alpha\text{-ketoglutarate} \\ Hydroxylase & O_2 \\ Fe^{2+} \\ ascorbate & CO_2 \end{array}$$

Phytanoyl-CoA

S-CoA

aldehyde dehydrogenase NAD(P)

NAD(P)H

Ketone Body Synthesis

Ketone Body Utilization

β-Hydroxybutyrate
$$CH_3$$
- CH_3 - CH

Fatty Acid β-oxidation

Comparison of Energetics of Metabolism for Glucose and Stearic Acid Energetic Glucose Stearate 9 Acetyl-CoA Stearate molecule (total) **Acetyl-CoA** CO_2 **Products** ATP $4 \rightarrow 4 \text{ ATP}$ -29 $7 \rightarrow 7 \text{ ATP}$ $10 \rightarrow 30$ 8 $35 \rightarrow 105 \text{ ATP}$ NADH 27 **ATP** FADH₂ $2 \rightarrow 4 \text{ ATP}$ 8 9 $17 \rightarrow 34 \text{ ATP}$ **146 ATP** Total **38 ATP**

Compound	ATP per carbon	Molecular Weight (g/mol)	ATP per gram (dry weight)	ATP per gram (wet weight)
Glucose (6 carbons)	6.3	180	0.2	~0.06
Stearate (18 carbons)	8.1	284	0.5	~0.5