
First Law		
State Function		
Bond Disruption		
Bond Formation		

Thermodynamics

Process

Equations

$$\Delta G^{\circ} = -RT \ln K_{eq}$$

$$R = 8.3145 \frac{joules}{mol \bullet K}$$

$$K_{eq} = \frac{[\text{Products}]}{[\text{Reactants}]}$$

$$A \rightleftharpoons B + C$$

$$K_{eq} = \frac{[B][C]}{[A]}$$

(must use units of *molar*)

$$\Delta G = \Delta G^{\circ} + RT \ln \left(\frac{[Products]}{[Reactants]} \right)$$

1. What is the First Law of thermodynamics?

2. What is the Second Law of thermodynamics?

3. Is the process 2 $\rm H_2 + \rm O_2 \ensuremath{\iff} 2 \rm \, H_2O$ likely to occur spontaneously? Why?

4. Of the terms $\Delta H, \Delta S, \Delta G,$ and $\Delta G^{\circ},$ which determines whether a process will occur spontaneously?

5. How do ΔG and ΔG° differ?