
Mathematical Modeling and Enzyme Kinetics 
In attempting to better understand an experimental system, it is often useful to 
attempt to generate a mathematical equation that describes some aspect of the 
system. In order to be maximally useful, the equation should have parameters that 
are related to the physical properties of the system under investigation. An 
equation may fit experimental data well, but is generally useless as a mathematical 
model unless the parameters of the equation lend insight into the experimental 
system being examined.1 
 
For kinetic studies of simple enzymatic reactions such as the one below (left), the 
usual mathematical model is the Michaelis-Menten equation (below, right): 
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This equation has the form of a rectangular hyperbola, and has two asymptotic 
parameters: the Vmax and the Km. The Vmax is usually interpreted to describe the 
velocity observed when the enzyme is fully saturated with substrate, and is a 
function of both the enzyme concentration and the catalytic rate constant of the 
enzyme. The Km is a measure of the affinity of the enzyme-substrate interaction. 
Each parameter therefore has a well-defined physical meaning related to the 
properties of the enzyme involved. 
 
When studying an enzyme, it is highly useful to measure the Vmax and Km values. 
In principle, the Vmax and Km values could be determined by measuring the velocity 
at two substrate concentrations, generating two equations with two unknowns that 
would allow solving for each unknown parameter. 
 
Because many enzymes do not exhibit simple Michaelis-Menten kinetics, analyzing 
more data is necessary to determine which mathematical model is more likely to be 
correct. In addition, in the real world, experimental data rarely fit an equation 
exactly, which means that any experimental parameter determined from only two 
data points is likely to exhibit significant deviations from the true value. Most 
experimenters therefore measure the reaction velocity for a range of substrate 
concentrations, and then use all of the data to estimate the Vmax and Km values. 
 
One well-accepted method for fitting data to a two-dimensional equation is to 
calculate the parameters that minimize the deviations of the dependent variable 
from the theoretical values. The least-squares linear regression algorithm allows 
the slope and y-intercept to be calculated exactly for any set of data. Unfortunately, 
as with many mathematical models, the Michaelis-Menten equation is not a linear 

                                            
1 This is not to say that totally empirical equations, such as calibration curves, are useless. 
Empirical equations with predictive value are widely used. In general, however, a totally empirical 
equation has very limited use in determining the mechanism by which a process occurs, and is 
frequently useless for making predictions outside of a narrow range of values of the independent 
variables. 
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equation, and as with most non-linear equations, the parameters cannot be 
calculated exactly for any set of data. Several approaches have evolved to analyze 
enzymatic reaction data; two of these approaches will be discussed below. 
 
In 1934, Hans Lineweaver and Dean Burk published a rearranged form of the 
Michaelis-Menten equation:2 
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A plot of 1/v versus 1/[S] is linear, and allows the use of linear regression to solve for 
the slope (which is Km/Vmax) and the y-intercept (which is 1/Vmax). Unfortunately, 
the double-reciprocal plot tends to be heavily distorted by experimental errors, and 
in consequence frequently results in inaccurate and sometimes nonsensical Vmax 
and Km values. 
 
An alternative method for estimating 
the Vmax and Km values is to use least-
squares non-linear regression to fit the 
data to the Michaelis-Menten equation 
directly. The technique of least-squares 
non-linear regression differs somewhat 
from methods used for analysis of 
linear equations. Because least-squares 
non-linear regression equations cannot 
be solved analytically, it is necessary to 
make an initial estimate of the 
equation parameters, and then perform 
iterative calculations intended to 

                                            
2Lineweaver, H. & Burk, D. (1934) “The Determination of Enzyme Dissociation Constants.” 
J. Am. Chem. Soc. 56, 658-666. 
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improve the fit between the theoretical and observed functions of the independent 
variables. Most computer programs (including Excel, see below) that allow this 
procedure have an algorithm for finding a minimum sum-of-the-squared errors.  
 
Least-squares non-linear regression algorithms have some potential drawbacks. 
One potential problem is that, if the initial estimate of the parameters is too far 
from the correct value, the algorithm may fail to converge on an answer. A second 
potential problem is that the mathematical function may exhibit local minima of 
sum-of-the-squares, and therefore converge on an incorrect value (this is rarely 
observed for the rectangular hyperbola). Finally, for real data, it may be difficult or 
impossible to distinguish unambiguously between deviations due to experimental 
error and deviations due to an incomplete mathematical model.  
 
When data fit a rectangular hyperbola fairly closely, they can be readily analyzed 
using either the Lineweaver-Burk plot or non-linear regression. However, real 
experiments may not yield data that are well behaved. You therefore need to look 
at the data and at the resulting graphs, and not merely accept (and report) the 
values calculated by Excel. There is no substitute for having an intelligent 
human look at the results of a kinetic (or any other kind of) experiment. 
 
 
Using Non-linear Regression in Excel 

1. Office 2007: Make sure that the Solver option is present in the Data tab. (If 
it is not present, click on the Office button, and then on Excel Options. 
Select Add-ins in the dialog box, and then click Go next to Manage Add-ins. 
Place a check box next to Solver, and click Add. Solver should appear in the 
Analysis section of the Data tab.) 

2. Office 2013: Make sure that the Solver option is present in the Data tab (it 
should be an option on the right side of the ribbon. (If it is not present, click 
on the File tab, and then on Options. Select Add-ins in the dialog box, and 
then click the Go button next to Manage Add-ins. Place a check box next to 
Solver, and click Add. Solver should appear in the Data tab.) 

3. Enter the data to be analyzed. 
4. Create a column of squared errors (for the Michaelis-Menten equation, the 

formula would be: (C9-(D$4*B9)/(D$3+B9)))^2, where C9 is the velocity data 
point, B9 is the substrate concentration data point, and D$4 and D$3 are the 
Vmax and Km values, respectively. (Note that the $ in from of the row number 
allows you to use “fill down” without changing the row reference.) 

5. Create a cell that has the sum of the squared errors column (e.g., D5). 
6. Enter initial values for Vmax and Km cells. The values should be reasonably 

close to the actual values, whenever possible.  
7. Select Solver from the Data tab. In the dialog box, Set Target Cell D5, Equal 

To: Min By Changing Cells $D$3 and $D$4. (Note that the cell references are 
specific for the example spreadsheet; you may need to use different ones.) 

8. Click Solve. 
 
An example spreadsheet for performing non-linear regression using the Michaelis-
Menten equation is posted on the course website. 


