
Copyright © 2000-2016 Mark Brandt, Ph.D. 
 

11  

Introduction to Enzyme kinetics 
Why study kinetics? 
Kinetic information is useful for examining possible mechanisms for the 
reaction. This is true for all types of reactions; kinetic principles are used to 
understand both catalyzed and non-catalyzed reactions.  
 
For enzymes, kinetic information is useful for understanding how metabolism is 
regulated and how it will occur under different conditions. For enzymes, kinetic 
information is useful for understanding pathological states. Diseases and 
disorders often involve alterations in enzymes or enzyme activities. Understanding 
the way that enzymes work is critical for understanding how drugs work, because 
many drugs function by interacting with enzymes. In addition, the more you 
know about an enzymatic reaction, the more information you will have for designing 
new drugs. 
 
Finally, essentially all of biochemistry is based on enzymes. It is nearly impossible 
to understand biochemistry without understanding enzymes, and it is impossible to 
understand enzymes without understanding the kinetic principles of the reactions 
they mediate. 
 
Thermodynamic considerations and transition state theory 
Consider a simple system involving the conversion of one molecule, S into another 
molecule, P. The molecules S and P have different energies. 

 

 
 
For this system, as for any other, ∆G´° = –RT ln Keq.  
 
∆G´° is a measure of the relative energies of the two molecules, and thus gives the 
direction for the reaction when the concentrations of the two molecules are equal. 
For reactions involving multiple substrates and products, ∆G´° gives the direction in 
which the reaction will proceed under standard conditions (i.e. when the 
concentration of all participating species is one molar, except protons and water: 
protons and water are exceptions, because ∆G´° refers to pH 7.0, and includes the 
high concentration of water in the term as a constant). 
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Thermodynamics determines which direction is preferred; however, standard 
thermodynamics yields no information about the rate of the reaction. Because the 
tools and concepts of thermodynamics are very powerful, they were extended to 
allow an understanding of why reactions occur with different rates.  
 
If a maximum energy state exists intermediate between S and P, and if this state 
is assumed to be in equilibrium with S and P, it is possible to apply the concepts of 
thermodynamics to the reaction process. This transient high energy intermediate is 
usually called a transition state, and will be abbreviated X‡ (the “‡” symbol is 
typically used to designate the transition state). The extension of thermodynamics 
to consider rates of reaction is called transition state theory to emphasize the 
importance of this concept. 
 

 
 
The equilibrium constant for the process of S going to the transition state is: 
 

 
 
(Note that “concentration of S” is usually abbreviated as “[S]”). This allows the 
calculation of the ∆G for the transition state. 
 

∆G‡ = –RT ln Keq‡ 
 
The ∆G‡ is the free energy difference between S and the transition state. (Note that 
there is also a separate ∆G‡ (in this case, a larger one) between P and the transition 
state). ∆G‡ is often referred to as the activation energy; it is the energy that 
molecules of S must have in order to form molecules of P. 
 

  
 
The rate of a chemical reaction depends on the ΔG‡ for the reaction. Using 
the principles of transition state theory, J.H. van’t Hoff and later Svante Arrhenius 
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derived an equation for the reaction rate constant: 

    

€ 

k = Ae
–ΔG ‡

RT  
 

In this, the Arrhenius equation, k is the rate constant for the reaction, and A is 
the Arrhenius constant for the reaction. The Arrhenius constant for a reaction is a 
measurable quantity. Transition state theory predicts that A = kBT/h, where kB is 
the Boltzmann constant (1.380649 x 10-23 J/K), T is absolute temperature, and h is 
Planck’s constant (6.6261 x 10-34 J•sec); for real reactions the measured value of A 
tends to vary from this theoretical value. 
 
The Arrhenius equation states that, if the ∆G‡ decreases, the rate of the reaction 
will increase (note that it also states that the rate of the reaction will increase with 
increasing temperature; changing temperatures is rarely possible for biological 
processes, but control of temperature can be important for in vitro experiments). 
 
Based on transition state theory, the rate of a reaction is dependent on the energy 
difference between the initial state and the highest energy transient state along the 
reaction pathway. Assuming that this is true, rate enhancements by enzymes must 
be mediated at least in part by a decrease in the energy of the highest energy 
transition state, although in some reactions, an enzyme may function in part by 
destabilizing the state that immediately precedes the transition state. 
 
A decrease in the energy of the highest energy transition state can be accomplished 
in one of two main ways. Some enzymes use one of these ways, and some use both. 
1) The enzyme stabilizes the transition state. The same transition state that 
would normally be present in the reaction pathway is also present in the enzyme-
catalyzed pathway, but in the enzyme-catalyzed pathway, this state has a lower 
energy. 
2) The enzyme allows a different pathway for the process. Without the enzyme, 
the reaction might proceed by some pathway. The enzyme allows a different series 
of reactions to occur that would otherwise be either of much higher energy or 
impossible. In the enzyme-catalyzed process, the highest energy transition state 
(which does not exist in the non-catalyzed process) has a lower energy than the 
energy of the transition state for the non-catalyzed process. 
 
Let us consider the first of these possibilities. Consider a reaction in which S is 
converted to P, either as a simple chemical reaction or as an enzyme-catalyzed 
process. Instead of merely stating S→P, for transition state theory we need to add 
an additional term: 

 
 

 
 
In each case, the reaction pathway passes through an identical transition state, X‡ 

(in the uncatalyzed pathway, this species is not bound to the enzyme, but it is the 
same species in both cases). In each case in the scheme above, the rate constant 
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shown is the one for the slowest step in the forward direction reaction. 
 
In the reaction diagram, we can show the binding of the substrate and dissociation 
of the product from the enzyme explicitly. Note that the ES complex is lower in 
energy than the free S, which is why this complex forms spontaneously. 
 

    
 
Using the principles of transition state theory, we can derive an equation for the 
rate enhancement mediated by the enzyme. Recall that the rate constant is related 
to the difference in energy of between the initial state and the transition state. 
 

Arrhenius equation:     

€ 

k = Ae
–ΔG ‡

RT  
 

If we divide the rate constant for the catalyzed reaction by that of the uncatalyzed 
reaction: 

    

€ 

kcat

kuncat

=
Ae

–ΔGcat
‡

RT

Ae
–ΔGuncat

‡

RT  
 
which simplifies  to: 

    

€ 

kcat

kuncat

= e
ΔGuncat

‡ –ΔGcat
‡

RT

 
 
Recall that Keq and ∆G° are related. Rearranging the standard equation for ∆G° to 
solve for Keq, we obtain: 

    

€ 

Keq = e
–ΔG°

RT  
Using this, we see that: 

    

€ 

kcat

kuncat

= e
ΔGuncat

‡ –ΔGcat
‡

RT =
K eq

‡

K eq

 

S

P
∆G´°

Progress of Reaction

E
n

er
gy

(X‡)

∆G‡uncat

∆G‡cat

ES

EP

(EX‡)E
+

E
+



Copyright © 2000-2016 Mark Brandt, Ph.D. 
 

15  

Thus, the ratio of the rate constant for the catalyzed reaction to that of the 
uncatalyzed reaction is equal to the ratio of the equilibrium constant for the binding 
of the enzyme to the transition state to that for the binding to the substrate. 
 

 
 

This deserves a few comments. The first is that while neither the X‡ nor the EX‡ are 
present in significant concentrations due to the transient nature of these species, it 
is, at least in principle, possible for the X‡ to bind to the free enzyme, or for the EX‡ 
complex to dissociate. The second is more important: the interaction between the 
enzyme and the transition state exhibits much higher affinity than the 
interaction between the enzyme and the substrate. The magnitude of this 
difference in affinity is proportional to the magnitude of the increase in rate 
constant. 
 
The function of a catalyst is to lower the energy of the transition state for 
the reaction: in other words, enzymes change ∆G‡. The most common method for 
allowing this is for the enzyme to bind the transition state more tightly than 
the substrate. The additional energy obtained from this binding stabilizes the 
transition state and therefore accelerates the reaction. Note that enzymes do not 
change the energy of S and P (because the free S and P are not bound to the 
enzyme). As a result, enzymes do not alter the ∆G´° for the reaction, but 
instead only alter the rate of the reaction, usually by altering ∆G‡. 
 
 
Chemical kinetics 

Zeroth-order kinetics 
Some reactions occur at rates that are independent of reactant concentration. In 
these cases, the rate of the reaction (often called the velocity of the reaction) is 
constant, regardless of the concentration of the participating compounds.  
 
Consider a simple reaction:  

  
S! ⇀!!↽ !!! P   

 
For this reaction the velocity of the reaction can be expressed as: 
 

  
v =

d[P]
dt

=
−d[S]

dt
= k

 
 

 
These equations state that at any given instant, the velocity is equal to the increase 
in concentration of P divided by the time interval, and that the velocity is also equal 
to the decrease in concentration of S divided by the time interval (note the minus 
sign in the –d[S]/dt expression). In this case, because the rate is independent of [S] 
and [P], the velocity = k, where k is the rate constant for the reaction. These 
(somewhat unusual) reactions are called zeroth-order reactions.  
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First-order kinetics 
Again, consider a simple reaction, but now a first-order reaction in which the rate 
depends on the reactant concentration: 

  
S! ⇀!!↽ !!! P  

  
v =

d[P]
dt

=
−d[S]

dt
 

 
If you assume that the reverse reaction does not occur (which is a valid assumption 
if the initial concentration of P is zero), then at any given time, v = k [S]. For 
zeroth-order and first-order reactions, k is the rate constant for the reaction; k is a 
measure of how rapidly the reaction will occur at any concentration of S, and has 
the units of time-1 (usually seconds-1 or minutes-1). In a first-order reaction, the rate 
depends on the concentration of a single species (in this case, the reactant S). 
 
The equation v = k [S] states that velocity is a linear function of S concentration. In 
the graph (below) the zeroth-order reaction has a constant velocity regardless of the 
concentration of S, while the first-order reaction velocity increases linearly with 
increasing S concentration. 
 

 
 
Another way to look at the course of these types of reactions is to consider the 
concentration of S as a function of time. For a zeroth-order reaction: 
 

 
 
while for a first-order reaction: 
 

 
 
where [S]0 is the concentration of S at the beginning of the reaction, and [S]t is the 
concentration of S at time t.  
 
Plotting these equations reveals that S concentration decreases linearly with time 
for a zeroth-order reaction, and that S concentration decreases exponentially with 
time for a first-order reaction. These observations make sense: for a first-order 
reaction, the rate of the reaction decreases as S is used up, because the rate 
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depends on the S concentration. 
 

 
 

 
(Note: the following, slightly simplified, derivation of the equation for the first-order 
reaction is included for completeness.) 

The rate equation:
  

−d[S]
dt

= k[S]  rearranges to: 
  

d[S]
[S]

= –kdt  

Integrating both sides: 
  

d[S]
[S][S ]0

[S ]

∫ = –kdt
0

t

∫    gives:   ln[S]− ln[S]
0
= –kt   

 
Raising both sides to the e power and rearranging gives:  
 

Second-order kinetics 
More complicated reactions can also occur: 

  
S +R! ⇀!!↽ !!! P +Q  

 
For these reactions: 

    

€ 

v =
d[P]
dt

=
d[Q]
dt

=
–d[S]

dt
=

–d[R]
dt

 

and 
v = k[S][R] 

 
Reactions of this type are second-order, and k is a second-order rate constant, 
because the rate of the reaction depends on the product of [S] and [R]. If the 
reaction involved the collision of two molecules of S, the velocity equation would be: 
 

v = k[S][S] = k[S]2 
 
The order of the reaction comes from the exponent that describes the number of 
reactants. Second-order rate constants have units of M-1•sec-1. 
 
Real chemical reactions rarely have more than two molecules interacting at one 
time, because the simultaneous collision of more than two molecules is unlikely. 
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(Note: there are a few examples of trimolecular reactions; in most reactions that 
appear to involve more than two reactants, two reactants form an intermediate, 
which then reacts with the other compound to form the final product.) 
 

Pseudo-first-order kinetics 
Studying second-order reactions is usually more difficult than studying first-order 
reactions. One way around this difficulty is to create “pseudo-first-order conditions”. 
These are conditions in which the concentration of one compound is very high. If the 
concentration of R is very high compared to S, then the concentration of R will 
essentially be constant during the reaction. This allows the equation to be re-
written: 

v = k[S][R] = kpseudo[S] 
 

The term for concentration of R did not disappear; because the concentration of R is 
approximately a constant, it was merely incorporated into the kpseudo first-order rate 
constant. 
 

Rate-limiting steps 
Many reaction pathways involve multiple steps. In most cases, one step will be 
appreciably slower than the others. This step is the rate-limiting step; it is the 
step upon which the rate of the overall reaction depends. Analysis for rate-limiting 
steps is important for understanding all types of reactions. (In biochemistry, 
analysis for rate-limiting steps in metabolic pathways is especially important, 
because these steps tend to be the ones that act as regulated control points for the 
pathway.) 
 
Michaelis-Menten kinetics 
Initially, it was assumed that a simple enzyme catalyzed reaction, such as S→P 
would be a first-order reaction: 

 
 
However, when the reaction data were analyzed, instead of a linear plot of velocity 
versus [S], the experiment yielded a hyperbolic curve. 
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Analysis of the data suggested that the reaction was first-order at very low 
concentrations of S (i.e. v ≈ k[S], where k is a rate constant appropriate for the 
conditions of the enzymatic reaction), and that as [S] increased, the reaction became 
progressively closer to zeroth-order (i.e. v ≈ k[E] = kcat[E], where kcat is the catalytic 
rate constant for the enzyme, and [E] is the enzyme concentration). 
 
To explain this phenomenon, it was necessary to hypothesize the formation of a 
complex between the enzyme and S. This hypothesis means that, even for the 
simple conversion of S to P, the reaction was actually somewhat more complicated 
than the expected first-order process: 
 

 
 

The velocity for the reaction is then: 
 

    

€ 

v =
d[P]
dt

= k2[ES] 

 
Note that this appears to be a first-order rate equation; however, the concentration 
of ES is not a linear function of [S]. Instead, the change in [ES] concentration as a 
function of time is more complex: 
 

    

€ 

d[ES]
dt

= k1[E]free[S] − k−1[ES] − k2[ES]  
 
Note that the above equation consists of the rate of formation of the ES complex 
(k1[E]free[S]) minus the rates at which the ES complex disappears (both k–1[ES] and 
k2[ES] describe rates of ES complex disappearance). This equation is rather difficult 
to use unless some simplifying assumptions are made. This is true for several 
reasons; the most obvious reason is that neither [ES] nor [E]free (the concentration 
of enzyme unbound to S) can be calculated (or measured) accurately, because 
neither one is an independent variable. 
 

Steady state assumption 
Most enzyme kinetics derivations depend on several assumptions: 
 

Assumption (1):  
    

€ 

d[E]
dt

= 0
 

The total amount of enzyme does not change during measurement of the reaction. 
This is usually a good assumption, because enzymes are catalysts that are not 
consumed during the reaction. 
 

Assumption (2):      

€ 

k2 << k1 and     

€ 

k2 << k–1 
The rate constant for the reaction, k2, is much smaller than the rate constants for 

 

 

E + S ES E + P
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ES formation, k1 and for ES dissociation, k–1. In other words, the rate-limiting 
step for the reaction is the actual catalytic step, while the ES complex rapidly 
reaches an equilibrium concentration. 
 

Assumption (3):      

€ 

[E]total << [S] 
The total concentration of enzyme is much less than the total concentration of S. 
Consequently, [S] remains approximately constant during the reaction. This 
assumption is very similar to that used in pseudo-first-order kinetics experiments, 
but it is a somewhat flawed assumption, because if [S] were not changing, no 
product would be formed. 
 

Assumption (4)      

€ 

[P]t =0 = 0 
The initial concentration of P is zero. This is implicit in the rate equation given 
above, because there is no term for formation of ES from P. In experimental 
systems, this assumption is usually valid, because the product can be omitted from 
the reaction vessel. 
 
Leonor Michaelis and Maud Menten, and later G.E. Briggs and James B.S. Haldane 
made these assumptions in slightly different ways (the Briggs-Haldane 
assumptions probably more closely model reality, but because both methods result 
in the same equation, the majority of textbooks refer to Michaelis and Menten as 
the originators of the concepts). Using these assumptions, it is possible to derive 
equations that describe the behavior of enzyme-catalyzed reactions. 
 
If the ES complex forms rapidly, and if the concentration of S does not change 
significantly during the reaction, then, for much of the reaction, the concentration of 
the ES complex will be constant. Mathematically, this concept is expressed as: 
 

    

€ 

d[ES]
dt

= k1[E]free[S] − k−1[ES] − k2[ES] = 0  
 

The equation above describes steady state conditions, and is critical to enzyme 
kinetics. (Note that the steady state assumption is an approximation; it is rarely 
absolutely correct, unless k2 = 0 or in situations where the substrate is replenished 
and the product removed during the reaction.) The term “steady state” refers to the 
fact that, while the concentration of ES is constant, it is continuously being both 
formed and disrupted. Thus, substrate is flowing, via the enzyme, in a steady 
stream to form product.  
 
Assuming that the amount of enzyme does not change during the reaction, the total 
enzyme concentration [E]total = [E]free + [ES]. Using this observation and the steady 
state equation, Michaelis and Menten derived an equation for velocity as a function 
of [S]. This important equation is known as the Michaelis-Menten equation.  
 

v =
Vmax[S]

K m+ [S]
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(Note: the derivation of the Michaelis-Menten equation is given in nearly all 
biochemistry textbooks, and it is unnecessary to reproduce it here.) 
 
The Michaelis-Menten equation is applicable to most enzymes, and is critically 
important to understanding enzyme action in biological systems. At least for simple 
systems, the Michaelis-Menten equation describes the way that the reaction 
velocity depends on the substrate concentration.  
 
The parameters Km and Vmax cannot be determined from a single measurement; 
instead, they must be determined by measuring velocity at a variety of [S]. 
 
 

The meaning of Vmax and Km 
Vmax is the velocity observed when all of the enzyme present is fully saturated with 
substrate; in other words, when [ES] = [E]total. This is only completely true if the 
concentration of S is infinitely high (which is obviously impossible in the real 
world). 
 
For the simple reaction we have been discussing, Vmax = k2[E]total. For more 
complex reactions, Vmax = kcat[E]total, where kcat is the rate constant for the slowest 
step of the reaction. Note that the Vmax is not an intrinsic property of the 
enzyme, because it is dependent on the enzyme concentration; the actual intrinsic 
property is the kcat. 
 
The Michaelis-Menten equation, and the definition of Vmax have one major 
consequence for biological systems: the velocity is directly proportional to the 
enzyme concentration. This means that one simple method for increasing 
the velocity is to synthesize more enzyme molecules. Increased enzyme 
concentrations result in higher velocities at any substrate concentration. 
 

 
 
In contrast to Vmax, the parameter Km is an intrinsic parameter of the enzyme. 
When properly performed, measurements of Km yield constant results, regardless of 
enzyme concentration. Note that if [S] = Km, the Michaelis-Menten equation 
reduces to v = 1/2 Vmax. Therefore, Km is a measure of the ability of the substrate to 
interact with the enzyme. Altering Km (either by having multiple isozymes with 
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different Km values, or by having an enzyme with a Km that can be regulated), also 
allows alteration in the velocity of a reaction.  
 
Another, related, way of looking at Km is to compare it to Kd, the equilibrium 
dissociation constant for formation of ES complex. The dissociation constant is a 
measure of affinity, with higher values indicating lower affinity. 
 

    

€ 

Km =
k−1 + k2

k1

   
    

€ 

Kd =
k−1

k1

 

 
If k2 = 0, then Km = Kd. Because, for most enzymes, k2 is relatively small compared 
to k–1, the Km value is often close to the Kd value. 
 
Note that k1 is a second-order rate constant, and has units of M-1•sec-1. The other 
rate constants are first-order, and have units of sec-1. This means that Km has units 
of M; in other words, both Km and Kd are expressed in concentration units. 
 
Contemplation of the Michaelis-Menten equation suggests that a low Km means a 
high affinity, and therefore, for a given substrate concentration, a high velocity. In 
contrast, a high Km means low affinity, and therefore low velocity at any [S]. 
 

Uses of Km 
Km can act as a measure of several useful properties of enzymes.  
 

1) Measurement of Km is used to determine the substrate preferences of an 
enzyme. If more than one endogenous compound can act as a substrate for an 
enzyme, the substrate with the lowest Km is probably the preferred 
physiological substrate. 

 
2) Measurement of Km is used to distinguish isozymes. Isozymes often have 

different affinities for the same substrate. 
 

3) Measurement of Km is used to check for abnormalities in an enzyme: An 
altered Km reflects some change in the way the enzyme binds the substrate. 
Km is therefore sensitive to modifications to the enzyme; measurement of Km 
can often reveal extremely useful information regarding mutations or other 
changes in the structure of an enzyme. 

 
 

Determining Vmax and Km 
A cursory examination of a velocity versus [S] plot (such as the one above) may 
suggest that the graph could be used to determine Km and Vmax. In practice, for any 
type of plot, accurately determining the values from a curve is difficult; for enzyme 
kinetics, it is especially difficult, because achieving v = Vmax is impossible, and 
because nothing about the curve states that: “the Km is right here!” 
 
To avoid this problem, several scientists derived linear forms of the Michaelis-
Menten equation. Hans Lineweaver and Dean Burk were the first to do one of these 
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derivations, and developed the double reciprocal plot (also called the Lineweaver-
Burk plot) in 1934. This plot has its deficiencies, but it is still useful, and all 
biochemists must be able to understand the information it presents.  
 
The equations below reveal that a plot of 1/v versus 1/[S] has a slope of Km/Vmax 
and a y-intercept of 1/Vmax. Further examination shows that x-intercept = –1/Km. 
 

    

€ 

1
v

=
Km

Vmax

1
[S]

+
1

Vmax

 

 
    

€ 

y =   m     x   +   b 
 

  
The Lineweaver-Burk plot is very useful for illustrative purposes, but tends to yield 
aberrant values of Km and Vmax unless the v versus [S] data fit the hyperbolic curve 
closely; in other words, for real-world data containing experimental errors, the 
Lineweaver-Burk plot is frequently inaccurate.  
 
When the Lineweaver-Burk plot was invented, computers effectively did not exist, 
and linearization of the Michaelis-Menten equation allowed for a simple analysis of 
the data. These linearization routines remain popular because most calculators and 
all graphing software packages are capable of calculating a least-squares linear 
regression analysis exactly. In contrast, most non-linear equations cannot be solved 
exactly. However, current computer technology allows for rapid iteration and 
optimization of the Km and Vmax parameters that best fit a set of data. The Excel 
Solver package and many other optimization routines are available to allow 
analysis of the non-linear Michaelis-Menten equation. For analysis of actual 
experimental v versus [S] data, non-linear regression methods that fit the data to 
the unmodified Michaelis-Menten equation are far more likely to yield satisfactory 
values for Km and Vmax. 
 
 

How fast is fast? 
The collision of molecules is limited by diffusion. Diffusion limits2 for proteins in 
aqueous solution are about 109 M-1•sec-1. This is a measure of the maximum 
                                            
2 Diffusion depends on the viscosity of the medium and the size of the molecules involved. Because 
both of these terms vary, the maximum rate of diffusion-based collisions depends both on the specific 
enzyme-substrate pair, and on the properties of the solution in which the measurements are 
performed. The value of ~109 M-1•sec-1 is based on average values for these parameters. 

Experimental
data1/v

1/[S]

–1/K
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possible rate for any reaction involving proteins in aqueous solution. (Note that the 
diffusion limit is a second-order rate constant; it has a concentration term because 
collision between molecules is concentration dependent.) 
 
kcat is a term used for the rate constant for the overall reaction. In complex 
reactions with several steps, where the maximal catalytic rate depends on several 
rate constants, kcat is the rate constant for the rate-limiting step.  
 
kcat = turnover number = the number of product molecules formed by one enzyme 
molecule in one second (or, for slow enzymes, in one minute). 
 
kcat/Km is a measure of the catalytic efficiency of an enzyme; in effect, it takes into 
account both substrate binding and conversion to product. kcat/Km cannot be faster 
than the diffusion limit (E and S must collide in order to react). 
 
Some enzymes operate at efficiencies approaching the diffusion limit. 
 

Enzyme3 Km (M) kcat (sec-1) kcat/Km (M-1•sec-1) 

Acetylcholinesterase 1 x 10-4 1.4 x 104 1.5 x 108 

Carbonic anhydrase 1.2 x 10-2 1.0 x 106 8.3 x 107 

Catalase 2.5 x 10-2 1.0 x 107 4.0 x 108 

Superoxide dismutase 3.6 x 10-4 1.0 x 106 1.8 x 109 

Ferredoxin reductase 1.0 x 10-7 1.0 x 101 1.0 x 108 
 
Specific activity is a term used when the molar enzyme concentration is not 
known. (If the moles of enzyme present is unknown, it is impossible to calculate 
kcat.) Specific activity is similar to turnover number, but is usually given in terms of 
velocity per milligram of total protein. 
 
 
Multisubstrate enzymes 
So far we have been looking at the kinetics of the enzyme reaction with one 
substrate. However, many enzyme reactions involve two substrates, and some 
involve even more. Kinetic equations for multi-substrate reactions have been 
derived that are analogous to the Michaelis-Menten treatment for single substrate 
reactions. 
 
                                            
3 The data in the table come from a variety of sources. For enzymes with turnovers appreciably 
greater than 105 sec-1, the values are largely estimates due to the difficulty of accurately measuring 
reactions of this rapidity, and different sources report different values. 
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By keeping the concentration of one substrate constant, and varying the 
concentration of the other substrate, Km and Vmax values can be obtained for 
multisubstrate enzymes. These values will only approximate the true Km and Vmax 
values because the concentration of the constant substrate used will not fully 
saturate the enzyme. Because the values are approximate, the values obtained in 
this manner are usually referred to as “apparent” Km and Vmax values. 
 
 

Mechanisms of multi-substrate reactions 
It was initially assumed that two substrate reactions would involve a ternary 
complex:  [ES1S2]. However, this is not necessarily true. 
 
Consider the reaction catalyzed by sucrose phosphorylase: 
 

 
 
In the absence of fructose, and in the presence of 32P-labeled inorganic phosphate 
(note that 32P is radioactive, and is therefore readily detected) the following reaction 
was observed: 
 

 
 
In other words, the enzyme catalyzed the exchange between phosphate covalently 
bound to the glucose and the phosphate in solution. This reaction was possible 
because the enzyme reacted with glucose (and fructose) in separate steps: 
 
Step 1: 
 

  
 

where “glucose-Enzyme” is a covalent reaction intermediate between glucose and 
sucrose phosphorylase. 
 
 
Step 2: 
 

 
 
There are two general types of 2-substrate reactions: Double displacement and 
Sequential. 
 
Double displacement reactions (also called “ping-pong” reactions) include the 
reaction mechanism shown in the sucrose phosphorylase example. One substrate 
binds the enzyme, is modified, and is released. The other substrate has to wait until 
the first product is released before binding to the enzyme. 
 

 

 

glucose-1-phosphate + fructose sucrose + phosphate

 

 

glucose-1-phosphate + 32P-phosphate glucose-1-32P-phosphate + phosphate

 

 

glucose-1-phosphate + Enzyme glucose-Enzyme + phosphate

 

 

sucrose + Enzymeglucose-Enzyme + fructose
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In contrast, in sequential reactions all substrates bind to the enzyme before 
catalysis occurs. 
 
There are two types of sequential enzymes, ordered and random. For ordered 
sequential enzymes, the reactants combine in a specific order and products are 
released in a specific order. 
 
For example, substrate1 binds, then substrate2 binds. The reaction occurs, and then 
product2 is released followed by the release of product1. 
 
For random sequence enzymes, there are no restrictions to the order of either 
substrate binding or product release. 
 
Careful analysis of kinetic data can be used to distinguish these mechanisms, but 
the methods involved are beyond the scope of this course.  
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Summary 
For enzyme-catalyzed reactions, the velocity of product formation can be described 
by the equation: v = k[ES]. The reaction is therefore first-order in relation to the 
concentration of ES complex. However, the reaction is not first-order relative to the 
directly measurable substrate concentration. Instead, under steady state conditions 
where [ES] is effectively constant, the velocity of an enzyme-catalyzed reaction is a 
hyperbolic function of [S]: 
 

    

€ 

v =
Vmax[S]
Km + [S]

 

 
The Michaelis-Menten equation has two parameters, Vmax and Km.  
 
Vmax = kcat[E]total, and therefore is a function of both the total enzyme concentration 
and of the catalytic rate constant of the enzyme for the reaction; kcat is an intrinsic 
property of an enzyme, while Vmax is not. 
 
Km is an intrinsic property of an enzyme; it is a measure of the affinity of the 
enzyme for the substrate. Biological systems often vary velocity by altering Vmax 
(either by increasing or decreasing the amount of enzyme present); Km is a sensitive 
measure of changes in the enzyme (either modifications of one enzyme, or the 
presence of more than one isozyme). 
 
All biochemists need to be able to interpret the information presented in the 
Lineweaver-Burk plot, and to understand the implications of kcat, Vmax, and Km. 
 
The Michaelis-Menten equation is somewhat difficult to analyze directly. One 
simple method for determining Vmax and Km from a set of velocity versus substrate 
data is to use the double reciprocal (Lineweaver-Burk) plot, a linear transformation 
of the Michaelis-Menten equation. A second method, which is preferable for any set 
of actual data, is to use non-linear regression techniques to directly fit experimental 
data to the Michaelis-Menten equation. 
 
 


